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Abstract

The aim of this article is to consider the property of the mean of the theoretical lifespan of an in-
dividual in the case where competing risks are not necessarily independent. We often encounter situa-
tions in which the lifespan of an individual dying from one cause may be correlated with that of the
same individual dying from a diŠerent cause. Assuming that the underlying distribution is a bivariate
Weibull, an estimator of the mean of lifespan and its asymptotic distribution can be derived. The test
procedure concerning independence of competing risks is given, employing asymptotic distribution
of a likelihood ratio statistic. As an alternative to the above test, we present a model selection ap-
proach based on an information criterion without use of the asymptotic theory. For a speciˆed risk,
we set forth a method to test the diŠerence between the mean lifespan of dependent competing risks
and that of independent ones. Then these ˆndings are applied to the analysis of lifespan data of mice
irradiated with X-rays. The resultant testing indicates that the theoretical mean lifespans related to
some causes of death are signiˆcantly shortened due to the presence of dependent competing risks. A
computational method for obtaining estimates of two scale parameters, two shape parameters and a
correlated parameter is proposed.

Keywords. bivariate Weibull distribution, asymptotic distributions, estimator of mean, test of in-
dependence

1. Introduction

The theory of competing risks has recently been developed for analysis of lifespan data. It is
often the case that the lifespan of individuals dying from a speciˆed cause are in‰uenced by other
causes of death, known as competing risks. Associated with the ith cause of death, there is a non-
negative random variable representing the observed time to death if all causes except the ith are in-
operative, i.e., the theoretical lifespan of an individual whose death is attributed only to the ith
cause. In most of the contributions, as seen in the reviews by David and Moeschberger2) and by
Crowder1), it is usually assumed that the causes of death operate independently so that the theoreti-
cal lifespan of an individual dying from a speciˆed cause is independent of that of the same individ-
ual dying from a diŠerent cause. However one often encounters dependent causes of death in many
situations. That is, the theoretical lifespan of an individual dying from a speciˆed cause may be
correlated with the theoretical lifespan of the same individual dying from a diŠerent cause.

In Section 2, we assume a family of bivariate Weibull distributions explored by Moeschberger4)

who extends the Marshall and Olkin idea3) of multivariate exponential distribution. Using this as-



6969順天堂大学スポーツ健康科学研究 第 7号（2003)

sumption, we derive an estimator of the mean of theoretical lifespan of this model based on a maxi-
mum likelihood estimator (MLE) of the parameter vector. In Section 3, we describe a test proce-
dure and a model selection approach based on the information criterion for checking the indepen-
dence in the model. We also derive the asymptotic distribution of the estimator of the mean con-
structed in the previous section, by using the asymptotic distribution of MLE. In addition, we give
test procedures for the diŠerence between the mean lifespan of dependent competing risks and that
of independent competing risks, by the use of Wald type test statistics, on the basis of the asym-
ptotic theory developed. In Section 4, we apply these test procedures to sets of experimental data
on radiation carcinogenesis realized through the lifelong breeding of female mice5). In the analysis,
we check the dependence of the theoretical lifespan of a mouse dying from a speciˆed cause and
that from another cause. Also we investigate the mean lifespan shortening which results from the
causes of death that are supposed to act dependently.

2. Estimation of the mean of theoretical lifespan

We recapitulate the likelihood function in the model mentioned in the Introduction, according to
the notations given by Moeschberger4). Let Yi (i＝1, 2) denote a nonnegative random variable
standing for the theoretical lifespan of an individual dying from a particular cause of death Ci. In
the simultaneous presence of both causes only the smallest of the Yi's, the min Yi, is in fact observ-
able with probability pl＝P(Yl＝min

i
Yi), together with the actual cause of death Ci (i＝1, 2). To es-

tablish the joint probability distribution of Y＝(Y1, Y2)′, we adopt a Marshall-Olkin type bivariate
Weibull distribution. Its survival function is expressed as

F̃Y1, Y2 ( y1, y2)＝P(Y1＞y1, Y2＞y2)
＝exp [－l1 y1

c2－l2 y2
c2－l12 max (y1

c1, y2
c2 )] (2.1)

where u＝(u1, u2, u3, u4, u5 )′＝(l1, c1, l2, c2, l12)′denotes a parameter vector with ls＞0, ct＞0( s＝
1, 2 : t＝1, 2), c1≠c2 and l120. Here the case in which c1＝c2 in (2.1) is not treated, since the
model in this case may be reduced to that concerning an independent Weibull random variable with
equal constants4).

Referring to (2.1), we deˆne the cumulative distribution function of yi for i(＝1, 2),
FYi( yi)＝1－F̃Yi( yi)＝1－exp {－(li＋l12)yi

ci}.
From which we have the probability density function

fi( yi)＝
dFYi

dyi
＝ci(li＋l12)yci－1

i exp {－(li＋l12)yi
ci}.

Therefore, the mean mi(u) of each theoretical lifespan Yi is derived as

mi(u)＝E [Yi]＝f
/

0
yi･fi( yi) dyi

＝(li＋l12)－1Wcif
/

0
u(c－1

i ＋1)－1
i exp (－ui) dui

＝(li＋l12)－1WciG(ci
－1＋1) (2.2)

where a variable transformation for the integration ui＝(li＋l12)yi
ci is performed and G stands for

the gamma function.
Denoting the observable lifespan of the jth individual ( j＝1, 2, ..., n) dying from Ci by Xij, we

have Xij＝Yi with Yi＝min
l

Yl for each j and assume that the probability pi＝P(Yi＝min
l

Yl) is posi-
tive with p1＋p2＝1. Suppose that mi individuals die from Ci. Also, let mi1 and mi2 denote the num-
bers of individuals dying from Ci in the interval [0, 1] and (1,∞), respectively. These time intervals
will be referred to as interval 1 and interval 2, respectively. Let Mik(i＝1, 2; k＝1, 2) be random
variables taking values mik. Also, let Xij, k denote the observed lifespan of the jth individual dying
from Ci in the kth interval. The probability function of Mik's is expressed as a multinomial distribu-
tion with parameters n＝m1＋m2 and p11t, p12t, p21t, p22t, i.e.,
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fM11, M12, M21, M22 (m11, m12, m21, m22|ct＞cs)

＝




n!
m11!m12!m21!m22!

(p11t)m11(p12t)m12(p21t)m21(p22t)m22

0

0mikn,

otherwise
(2.3)

for t＝1, 2; s≠t, where n＝m11＋m12＋m21＋m22, p11t＝P(Y1Y2, 0Y11|ct＞cs), p12t＝P(Y1
Y2, 1＜Y1＜∞|ct＞cs), p21t＝P(Y2Y1, 0Y21|ct＞cs), and p22t＝P(Y2Y1, 1＜Y2＜∞|ct＞cs).

With the notations described so far, we construct the explicit expression of the loglikelihood
function subject to c2＞c1,

log Ln(u|c2＞c1)

＝log { n!
m11!m12!m21!m22!}＋m11 log (l1＋l12)＋m12 log l1

＋m21 log l2＋m22 log (l2＋l12)

＋m1 log c1＋m2 log c2＋
2

∑
i＝1

(ci－1)
2

∑
k＝1

mik

∑
j＝1

log xij, k

－
m11

∑
j＝1

[(l1＋l12)x c1
1j, 1＋l2x c2

1j, 1]－
m12

∑
j＝1

[l1x c1
1j, 2＋(l2＋l12)xc2

1j, 2]

－
m21

∑
j＝1

[(l1＋l12)x c1
2j, 1＋l2x c2

2j, 1]－
m22

∑
j＝1

[l1x c1
2j, 2＋(l2＋l12)xc2

2j, 2]. (2.4)

The loglikelihood function subject to c1＞c2 is similarly expressed. We can consider an MLE, Âu＝
( Âu1, Âu2, Âu3, Âu4, Âu5)′＝( Âl1, âc1, Âl2, âc2, Âl12 )′of the parameter u whose value is selected from Âu(t ) as the
one realizing the max [log Ln( Âu(t )|ct＞cs; s, t＝1, 2, s≠t ]. Here each u(t )(t＝1, 2) denotes an MLE of
u subject to a constraint ct＞cs, i.e., an estimator satisfying

log Ln( Âu ( t )|ct＞cs)＝sup
u
{log Ln(u|ct＞cs)}, (2.5)

in (2.4). For brevity's sake, expressions such as `̀ |ct＞cs'' or `̀ |ct′＞cs′'' will be omitted hereafter.
By use of an MLE Âu, we obtain an estimator of the mean mi(u) in (2.2),

âmi＝mi( Âu)＝( Âli＋ Âl12)－1W âciG( âci
－1＋1) (i＝1, 2). (2.6)

3. Asymptotic distributions for hypothetical testing

We ˆrst deal with a problem for a composite hypothesis,
H0l12＝0 against H1l12＞0, (3.1)

which checks the independence of competing risks. For the hypothesis, we construct a likelihood
ratio statistic l(t ) as

l( t )＝－2 log L( t )＝－2 log «sup {Ln(u)H0)}
sup {Ln(u)} $. (3.2)

This leads to the following theorem:

Theorem 3.1 Under the null hypothesis H0, the statistic l(t ) has an asymptotic central chi-square
distribution with one degree of freedom x 2

1 (0) as n→∞.

The null hypothesis H0 is rejected at the a level of signiˆcance if Âl(t )＞x 2
1, a (0).

As an alternative to the asymptotic test, we may perform a model selection approach based on
the Schwarz information criterion (SIC). The criterion is deˆned as SIC＝－2 log L( Âu)＋p log n,
where p is the number of parameters in the model. In this setting we assume two models cor-
responding to H0 : l12＝0 and H1 : l12＞0. The null hypothesis H0 is rejected if the following ine-
quality holds:

d1ø－2{log L( Âu0)－log L( Âu＋)}＞log n, (3.3)
where Âu＋ and Âu0 are parameter vectors of dependent ( p＝5) and of independent ( p＝4) competing
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risks, respectively.
Since each sequence n－1In(u)＝n－1E{[;u log Ln(u)][;u log Ln(u)]′} converges to a positive

deˆnite matrix I(u), the MLE Âu(t ) follows asymptotic penta-variate normal distribution, namely,
n ( Âu ( t )－u)～N5(0PI(u)) (n→/).

To ˆnd the asymptotic distribution of the estimator âm(t ) of the mean vector m(u)＝(m1(u), m2(u))′,
we write

[D(u)]′＝




[;u(m1(u))]′
[;u(m2(u))]′




＝







&m1(u)
&u1

&m2(u)
&u1

&m1(u)
&u2

&m2(u)
&u2

…

…

&m1(u)
&u5

&m2(u)
&u5







.

Thus the estimator âm(t ) of the mean vector m(u) for each t(＝1, 2) has an asymptotic bivariate nor-
mal distribution,

n (m( t )－m)～N2((0, [D(u)]′[I(u)]－1D(u)) (n→/). (3.4)
We now set a hypothesis,

H0m1(u1)－m2(u2)＝0 against H1m1(u1)－m2(u2)≠0 (3.5)
which concerns the diŠerence between the mean lifespan of dependent competing risks m1(u1)＝(m11

(u1), m12(u1 ))′and that of independent ones m2(u2 )＝(m21(u2), m22(u2 ))′, where
m1i(u1)＝(l1i＋l112)－1Wc1iG(c1i

－1＋1),
m2i(u2)＝(l2i＋l212)－1Wc2iG(c2i

－1＋1), (i＝1, 2).
To test this hypothesis, deˆning for each c1t＞c1s, c2t′＞c2s′

Q( t, t′)(u)＝[D(u1)]′[nI(u1)]－1D(u1)＋[D(u2)]′[nI(u2)]－1D(u2), (3.6)
we construct a Wald type test statistic for each t and t′

W ( t, t′)＝( âm1
( t )－ âm2

( t′))′[Q( Âu)]－1( âm1
( t )－ âm2

( t′)), (3.7)
where âm (t )

1 and âm (t′)
2 are MLE's subject to c1t＞c1s, c2t′＞c2s′, respectively. Then we derive the follow-

ing theorem:

Theorem 3.2 Under the null hypothesis H0, the statistic W (t, t′) has an asymptotic central chi-
square distribution with two degrees of freedom x 2

2 (0), namely W (t, t′)
d
→x 2

2 (0) (n→∞).

Using this theorem, we can determine an asymptotic critical region of H0 against H1. According-
ly, H0 is rejected if ÂW (t, t′)＞x 2

2,a (0).

4. Application to analysis of experimental data on radiation carcinogenesis

The sets of data used here are provided from an experiment described in detail in Sato et al.5). We
take a set of lifespans of 115(＝n) ddY female mice whose whole bodies were irradiated with X
rays, 600R. These data sets were obtained through the lifelong breeding of the female mice and
hence without censoring. As a speciˆed risk Ci assumed to be the only risk present, each of the fol-
lowing diseases was observed: (1)Malignant lymphoma (MLL), (2)Tumor (TMR), (3)In‰ammatory
diseases (INF) and (4)Others (OTH). The experimenters5) indicated that Weibull distributions ˆtted
these data sets well for every speciˆed risk, showing that linearities were observed in the sets of cu-
mulative mortality ratio plots on Weibull probability paper.

In Table 1 we observe that for each speciˆed risk Ci the number m11 of mice whose observed
lifespans are in the interval 1 (in which each observed lifespan470 days) and the number m12 of
mice whose observed lifespans are in the interval 2 (in which each observed lifespan ＞470 days)
and the total m1＝m11＋m12.

Also we see the numbers m21 and m22, representing those dying from other risks (ANH) than the
speciˆed risk, whose observed lifespans are in the interval 1 and in the interval 2, respectively. The
total m2＝m21＋m22. The constant a＝470 is taken as a value approximately representing the medi-
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Table 1 The numbers m11 and m12 represent the numbers of mice dying from each speciˆed risk. The observed
lifespans are470 (interval 1) and＞470 (interval 2), respectively. The numbers m21 and m22 represent the numbers
of mice dying from other risks. The observed lifespans are 470 (interval 1) and ＞470 (interval 2), respectively.

Lifespan No. of
mice

(1) (2) (3) (4)

i＝1 i＝2 i＝1 i＝2 i＝1 i＝2 i＝1 i＝2
MLL ANH TMR ANH INF ANH OTH ANH

470 mi1 37 50 21 66 25 62 4 83
＞470 mi2 5 23 15 13 7 21 1 27

(total) mi 42 73 36 79 32 83 5 110

Table 2 MLE's of the parameters when the theoretical lifespans are as-
sumed to be independent and dependent.

Assumption Estimate
Speciˆed risk

MLL TMR INF OTH

Independent Âl1 0.05540 0.10075 0.12566 0.05812

âc1 4.21677 4.01752 3.49185 2.33381

Âl2 0.28865 0.24325 0.21874 0.28218

âc2 3.49490 3.44574 3.70410 3.84411

Dependent Âl1 0.45461 0.35236 0.36699 0.06001

âc1 2.14629 3.36685 2.39783 2.07128

Âl2 0.72490 0.85076 0.84422 1.30696

âc2 2.84478 2.20271 2.68280 2.32723

Âl12 0.19745 0.17466 0.24197 0.07081

an of the ranges of the observed lifespans of mice.
Considering the circumstance appearing in Table 1, we take a linear transformation Yi＝Zi/a(i＝

1, 2), where Zi denotes a theoretical lifespan of a mouse dying from a speciˆed risk Ci, assumed to
be the only risk present. Also Yi denotes a theoretical lifespan and Y＝(Y1, Y2 )′is assumed to be a
random vector corresponding to the Weibull model described in Section 2. Through the above
transformation, Z＝(Z1, Z2)′follows the model consisting of a bivariate Weibull distribution.

The computational method for obtaining values of the MLE Âu with respect to a speciˆed risk, say
MLL, falls into two stages:

I. Assuming that Z1 and Z2 are independent, calculate the following values by the Newton
Raphson method,
1) estimates Âl (0)

1 and âc (0)
1 of parameters l1 and c1 concerning the speciˆed risk MLL.

2) estimates Âl (0)
2 and âc (0)

2 of parameters l2 and c2 for the speciˆed risks TMR, INF and OTH
together.

II. Calculate estimates of parameters including l12 by means of Monte Carlo simulation, using
the following steps:
1) create random numbers ui (i＝1, 2, ..., 5) generated from a standard normal distribution.
2) let

Âl1＝ Âl1
(0)(1＋0.1u1), âc1＝ âc1

(0)(1＋0.1u2),
Âl2＝ Âl2

(0)(1＋0.1u3), âc2＝ âc2
(0)(1＋0.1u4), Âl12＝0.2|u5|
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Table 3 Approximate values of the likelihood ratio statistic
Âl(t), the asymptotic signiˆcance probability p for the test of
independence, and an estimate of the probability âr of depen-
dence between the speciˆed risk and other risks.

Approximate
values

Speciˆed risk

MLL TMR INF OTH

Âl(t) 10.9701 1.89228 17.1730 4.07367

p 0.00093 0.16895 0.00003 0.04356

âr 0.14339 0.12677 0.16651 0.04925

Table 4 Estimates of the means of theoretical lifespans âm11, âm12 and âm21, âm22

when competing risks are assumed to be independent and dependent,
respectively. In the bottom two rows, approximate values of the Wald type
test statistics ÂW (t,t′) and their signiˆcance probability p regarding MLL and
INF are shown.

Estimate
Speciˆed risk

MLL TMR INF OTH

Independent âm11 563.976 526.758 566.465 1375.24

âm12 437.604 421.642 415.305 379.624

Dependent âm21 502.345 ― 506.073 ―

âm22 436.671 ― 414.844 ―

For Test ÂW (t,t′) 21.0889 ― 20.1102 ―

p 0.00003 ― 0.00004 ―

3) compute the value of

log Ln＝




log Ln( Âu|c2＞c1) if âc2＞ âc1

log Ln( Âu|c1＞c2) if âc1＞ âc2

4) go back to step 1) of stage II until log Ln attains local maximum giving Âu＝
( Âl1, âc1, Âl2, âc2, Âl12)′.

The performance of stage I results in Table 2, in which estimates of the MLE Âu are listed when l12

＝0, namely, the independence between Z1 and Z2 is assumed for each speciˆed risk Ci.
After carrying out stage II, we obtain estimates of the MLE Âu for each speciˆed risk Ci under l12

＞0, also shown in Table 2.
In order to test (3.1), Table 3 displays a value of likelihood ratio statistic l(t ) in Theorem 3.1 and

its asymptotic signiˆcance probability p for each speciˆed risk Ci.
To decide whether H0 should be rejected or not from SIC viewpoint, we calculate a value of d1

for each Ci to which the value of log n＝log 115＝4.74493 in the right-hand side of (3.3) is com-
pared. We here remark that d1 is identical to l(t ) stated above, so that the value is not listed again in
Table 3.

Although the correlation of Z1 and Z2 cannot be explicitely expressed, the probability r of the de-
pendence between Z1 and Z2 is proposed4) as r＝P( Z1

c1＝Z2
c2 )＝l12(l1＋l2＋l12 )－1. The values âr

are given in Table 3.
From Table 3, we may conclude that the null hypothesis H0 : l12＝0 is rejected in the case where
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the specifed risk Ci is MLL or INF.
We yield an estimate âmof the mean vector mof Z for each speciˆed risk Ci under independent

competing risks by substituting the values in Table 2 into (2.6) with Âl12＝0. In similar fashion, we
can obtain estimates âmfor MLL or INF, in both of which cases the dependences are admitted by
the previous tests. Values with respect to the mean lifespans are listed in Table 4.

In order to test the hypothesis,
H0 : m1－m2＝0 against H1 : m1－m2≠0,

we use a Wald type test statistic W (t, t′) given by (3.7). Table 4 also shows the value of W (t, t′) and its
asymptotic signiˆcance probability. Thus the null hypothesis H0 is rejected for MLL and INF. This
suggests that the theoretical mean lifespan of a mouse dying from malignant lymphoma or in‰am-
matory diseases is signiˆcantly diŠerent and shortened due to the presence of dependent competing
risks.
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