Journal of Human Genetics (2014) 59, 649-654

doi:10.1038/jhg.2014.88

Journal of human genetics (http://www.nature.com/jhg/index.html)

Original Article

Precise detection of chromosomal translocation or inversion breakpoints by whole-genome

sequencing

Toshifumi Suzuki^{1,2}, Yoshinori Tsurusaki¹, Mitsuko Nakashima¹, Noriko Miyake¹, Hirotomo Saitsu¹,

Satoru Takeda², Naomichi Matsumoto¹

1. Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama

236-0004, Japan

2. Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo 113-8421,

Japan

Correspondence to:

Naomichi Matsumoto

Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama

236-0004, Japan

Tel.: +81-45-787-2606

Fax: +81-45-786-5219

E-mail: naomat@yokohama-cu.ac.jp (N. Matsumoto)

Running title

Whole genome sequencing of structural variations

Keywords (5 keywords < 8 keywords)

1

Structural variations, breakpoints, whole-genome sequencing, BreakDancer, Integrative Genomics Viewer	r

Abstract

Structural variations (SVs), including translocations, inversions, deletions, and duplications, are potentially associated with Mendelian diseases and contiguous gene syndromes. Determination of SV-related breakpoints at the nucleotide level is important to reveal genetic causes for diseases. Whole -genome sequencing (WGS) by next-generation sequencers is expected to determine structural abnormalities more directly and efficiently than conventional methods. In this study, 14 SVs (nine balanced translocations, one inversion and four microdeletions) in nine patients were analyzed by WGS with a shallow (5×) to moderate read coverage (20×). Among 28 breakpoints (as each SV has two breakpoints.), 19 SV breakpoints had been determined previously at the nucleotide level by any other methods and nine were uncharacterized. BreakDancer and Integrative Genomics Viewer determined 20 breakpoints (16 translocation, two inversion and two deletion breakpoints), but did not detect eight breakpoints (two translocation and six deletion breakpoints). These data indicate the efficacy of WGS for the precise determination of translocation and inversion breakpoints.

Introduction

Structural variations (SVs), including translocations, inversions, deletions, and duplications, potentially lead to human genetic diseases arising from disruption and dosage changes of functionally important genes 1. In particular, apparently balanced chromosomal rearrangements have been frequently associated with human diseases, such as premature ovarian failure, Sotos syndrome, Peters anomaly, testicular atrophy, Mowat-Wilson syndrome, developmental delay, and intellectual disability²⁻⁶. The incidence of apparently balanced chromosomal rearrangements is in the range of from 1/500-1/625 7. Precise structural analysis of SVs and their breakpoints may lead to identification of the genetic causes of such diseases. The conventional methods to determine SV breakpoints including fluorescence in situ hybridization (FISH) using bacterial artificial chromosome clones; Southern blot hybridization; and inverse PCR or long-range PCR, which are laborious, time consuming, and have limited success rates⁸. Recently, whole genome sequencing (WGS) using next-generation sequencers has provided new avenue for SV analysis^{2, 7-9}. However, accurate detection of SV breakpoints using WGS has not been fully established. In this study, WGS was used to analyze nine patients having 14 SVs. As each SV has two breakpoints, 28 SV breakpoints were analyzed. Among them, 19 SVs had already been determined by conventional methods in our previous studies^{6, 10-13} were used as a training set and nine other uncharacterized breakpoints were analyzed. The purpose of this study is to investigate the chromosomal breakpoint of the patients in whom G-banded karyotyping was already performed. The results of WGS analysis of these patients are presented.

Material and methods

Subjects

Nine patients, including eight who were reported previously^{6, 10-14} were included in this study. G-banded karyotyping was performed for all patients (Table 1). The nine patients possess a total of 14 SVs (nine translocations, one inversion and four microdeletions) (Tables 1 and 2). As each SV event involves two breakpoints, a total of 28 SV breakpoints are the targets of this study. Among 28 SV breakpoints, 19 were

previously determined at the nucleotide level by conventional methods^{6, 10-14} and used as a training set (Tables 1 and 2). Peripheral blood samples were collected from all patients after obtaining written informed consent. Genomic DNA was extracted from leukocytes using the QuickGene-610L DNA extraction system (Fujifilm, Tokyo, Japan) was used to extract genomic DNA from leukocytes, according to the manufacturer's instruction. The institutional review board of Yokohama City University School of Medicine approved the study.

Whole genome sequencing

Briefly, 1 µg of genomic DNA with each sample was shared using the Covaris model S2 system (Covaris, Woburn, MA, USA). The target size was 350 bp. DNA was prepared using the TruSeq DNA Sample Prep Kit (Illumina, San Diego, CA, USA) or the TruSeq DNA PCR-Free Sample Prep Kit (Illumina). The HiSeq 2000 or 2500 platform (Illumina) performed WGS with 101-bp paired-end reads. Sequence-control, software real-time analysis and CASAVA software v1.8.2 (Illumina) performed image analysis and base calling.

Structural variation breakpoint analysis

The analytical flow chart is illustrated in Figure 1A. Burrows-Wheeler Aligner (BWA-MEM) v0.7.1 ¹⁵ with default parameters was used to map the data to the hg19 human genome reference sequence from UCSC Genome Browser. BreakDancerMax (BD) ver.1.4.4 with the default setting was used to validate breakpoints of SVs, including translocations, inversions, and deletions at the nucleotide level using the WGS data (Binary Alignment/Map format). A Poisson model ¹⁶ was used to calculate the confidence score for each candidate variant. BD is able to identify inter-chromosomal translocation (CTX), inversion (INV), and deletion (DEL). We focused on variant reads adjacent to chromosomal breakpoint positions from the information of G-banded karyotyping. Aligned reads adjacent to SV breakpoints were visualized and carefully evaluated using Integrative Genomics Viewer (IGV)¹⁷. In IGV, chimeric read pairs that mapped to different chromosomes at each end were predicted to cover translocation breakpoints (Figure 1B). Discordant read pairs that mapped to the reference genome with abnormal distance and/or

orientation were predicted to cover breakpoints of inversion and insertion or deletion. Soft-clipped reads consisting of two different sequences (within a single read) mapped to discontinuous parts of chromosome(s) that potentially covered SV breakpoints (Figure 1B).

Validation of chromosomal breakpoint positions

PCR and Sanger sequencing confirmed all potential SV breakpoints. Primer3Plus (http://primer3plus.com/) was used to design the primer sequences. PCR was performed using KOD FX Neo polymerase (TOYOBO, Osaka, Japan). Primer sequences and PCR conditions are available on request. PCR products were electrophoresed through a 1.0 % agarose gel and sequenced by Sanger sequencing on an ABI3500xl sequencer (Applied Biosystems, Foster City, CA, USA).

Results

We analyzed 28 SVs in nine patients. The analytical workflow of the respective patients is shown in Figure 2. Mean read depth of WGS was in the range of 5.95–21.92× (Table 1). Initially, genomic DNA of each patient was sequenced using TruSeq DNA Sample Prep Kit. However, the read coverage did not reach the expected level because of high PCR duplication rates (Supplementary Table 1). Therefore, we switched the kit to the PCR-Free Sample Prep Kit and successfully attained the expected read coverage (Supplementary Table 1). We were able to detect 18 SV breakpoints of 28 (64.3 %) using BD (Tables 1 and 2, and Figure 2).

For translocations and an inversion, the numbers of CTX and INV read by BD through a whole genome had a range of 61–4,698 (Supplementary Table 2). We then focused on those related to the involved chromosome(s) by translocation or inversion, and found that 1–39 CTX or INV reads remained as candidates (Supplementary Table 2). Among the data, 12–31 chimeric read pairs and 28 discordant read pairs were carefully evaluated, which may have spanned SV breakpoints by IGV in patients 2, 3, 4, 6, 7, 8, and 9 (Table 1, Figure 3, and Supplementary Figure 1). In patients 1, 3, 4, 7, 8, and 9, one to six soft-clipped reads in IGV covered the SV breakpoints accurately (Table 1, Figure 3, and Supplementary

Table 3). In patient 1, one CTX read by BD was a false-positive (Table S2), however, one soft-clipped read by IGV covered the 1q32 breakpoint (Table 1, Supplementary Table 3, and Figures 2 and 3). The 9q13 breakpoint region was undetected by either BD or IGV (Table 1, and Figures 2 and 3), because the genomic sequences of the region around centromeric 9q13 are unavailable. In combination with BD and IGV, 16 out of 18 translocation (88.9%) and two out of two inversion breakpoints (100%) were successfully determined.

Deletions in patient 3 (a 4,192-bp deletion in the X-chromosome and a 7,029-bp deletion in chromosome 4) and patient 4 (a 806,297-bp deletion in chromosome 7 and an approximately 4.6-Mb deletion in chromosome 15) were determined previously by conventional methods^{12,14}. A total of 1,943–1,945 DEL reads were called by BD and 51–159 DEL reads related to the involved chromosomes remained as candidates; however, only one DEL read accurately covered the deletion breakpoint in chromosome 7. Therefore, we were able to detect the deletion breakpoints by BD in two of eight deletion breakpoints (25%) (Table 2 and Supplementary Table 4). Using IGV, nine discordant read pairs accurately covered the deletion breakpoints in patient 4 (Table 2) Furthermore, two soft-clipped reads in IGV accurately covered the breakpoint in patient 4 (Table 2 and Supplementary Table 3). Of note, in patient 3, the deletions were adjacent to translocation breakpoints (Supplementary Figure 2).

Discussion

In this study, 20 out of 28 SV breakpoints were successfully determined by WGS (71.4%). A relatively shallow (5×) read coverage enabled us to determine the translocation breakpoints (Table 1). Translocation and inversion breakpoints were highly detected by our method (88.9-100%), athough the detection rate of deletion breakpoints was relatively low (25%). The false negative rates by BD solely and BD combined with IGV were 10 out of 28 (35.7%) and 8 out of 28 (28.6%), respectively. The total number of called reads by BD including CTX, INV, and DEL were quite different among samples (61-4,698) (Supplementary Table 2 and 4). The estimation of the false positive rate (FPR) was difficult, because large and varying numbers of reads were called by BD. Therefore, FPR was unknown in the present study.

In patient 1, it was expected to be difficult or impossible to determine the 9q13 breakpoint because the genomic sequence data of the 9q13 centromeric region were unavailable. However, although no chimeric read pairs covering the breakpoints were obtained, one soft-clipped read accurately determined the der(1) breakpoint at the nucleotide level (Figures 2 and 3, Supplementary Table 3). The sequence with unknown origin in the soft-clipped read should be derived from the centromeric region at 9q13, as shown in a previous study¹⁰.

In patient 3, two CTX reads were called by BD (Supplementary Table 2). Interestingly, deletions existed adjacent to the reciprocal translocation in both chromosomes X and 4 (Supplementary Figure 2). However, BD did not call any DEL presumably because the sequences either side of the deletion breakpoints are connected to different chromosomes.

In patients 4 (for t(9;14)), 8, and 9, translocation or inversion breakpoints had not been determined previously at the nucleotide level by any conventional method. We were able to determine the breakpoint positions of these patients by BD (Table 1, and Figures 2 and 3). A total of 14–31 chimeric read pairs or 28 discordant read pairs covered the SV breakpoints (Table 1 and Figure 3). Among the soft-clipped reads, 2–6 reads also covered the precise breakpoints, including eight or nine-nucleotide insertions of unknown origin (Table 1, and Supplementary Table 3).

In patient 5, chromosomal breakpoints could not be detected by our method (Table 1, Supplementary Table 2). Breakpoint sequences were determined in the previous study, and no repetitive sequences and structural abnormalities were found around the breakpoints regardless of the relatively reasonable read coverage at the breakpoints (17 reads or 22 reads at Xq22.3 and 2p14, respectively). The reason for detection failure remains elusive.

The reason for the low detection rate of deletion breakpoints is that BD can only detect deletions with the sizes of <1 Mb. One 4.6-Mb deletion in which we were unable to determine deletion breakpoints was far beyond the size of the detection limit of BD. In addition, two deletions were adjacent to the translocation breakpoints in patient 3. Therefore, the two deletions were complicated. Each end of the two deletions

and two translocation breakpoints are in the same location in patient 3. The only deletion in which we

could determine breakpoints was the only simple 806-kb deletion within a single chromosome.

In conclusion, our approach, using shallow-to-moderate WGS data, enabled us to determine accurately

the breakpoints of SVs especially for chromosomal translocations and inversions. Conventional

karyotyping, as well as the approximate localization of the SV breakpoints by FISH, was absolutely

important for our WGS-based breakpoint detection. WGS analysis should be first considered for

determination of SV breakpoints in NGS era.

Conflict of interest: The authors declare no conflicts of interest.

Acknowledgements

We would like to thank all the patients and their families for their participation in this study. We also

thank Nobuko Watanabe for her technical assistance. This work was supported by the Ministry of Health,

Labour and Welfare of Japan; the Japan Society for the Promotion of Science (a Grant-in-Aid for

Scientific Research (B), and a Grant-in-Aid for Scientific Research (A)); the Takeda Science Foundation;

the fund for Creation of Innovation Centers for Advanced Interdisciplinary Research Areas Program in

the Project for Developing Innovation Systems; the Strategic Research Program for Brain Sciences; and a

Grant-in-Aid for Scientific Research on Innovative Areas (Transcription Cycle) from the Ministry of

Education, Culture, Sports, Science and Technology of Japan.

9

Figure Legends

Figure 1. Schematic presentation of the analytical flow and graphical presentation of chimeric read pairs, discordant read pairs, and a soft-clipped read. A) Flow chart of structural variation (SV) breakpoint analysis using whole genome sequencing (WGS) data. Burrows-Wheeler Aligner (BWA-MEM) v0.7.1 was used to map WGS data to human genome hg19. Inter-chromosomal translocation (CTX), inversion (INV), and deletion (DEL) were predicted using BreakDancerMax (BD). CTX, INV, and DEL calls were selected only from the involved chromosomes. Furthermore, we focused on chimeric read pairs, discordant read pairs, and soft-clipped reads using Integrative Genomics Viewer (IGV). Finally, we confirmed SV breakpoints by Sanger sequencing. B) Graphical images of chimeric read pairs, discordant read pairs, and a soft-clipped read. Upper; illustration of chimeric read pairs covering a translocation breakpoint, t(A;B). A soft-clipped read covers the breakpoint. Middle; intrachromosomal inversion. P and Q are marked to show the orientation. Inversion may lead to discordant read pairs. Lower; discordant read pairs detect intrachromosomal deletion

Figure 2. Flow chart of the analysis in nine patients. Left and right panels are shown in the detection of translocation/inversion and deletion breakpoints, respectively. BD was first used to detect SV breakpoints. We then carefully evaluated the chimeric read pairs, discordant read pairs and soft-clipped reads using IGV. Validation was performed by the Sanger method

Figure 3. Breakpoint junction sequences in nine patients. Upper, middle, and lower sequences indicate reference sequences of one end of an SV, derivative/deleted chromosome, and the other end of the SV. Breakpoint positions are marked with short longitudinal lines. Numbers are based on the nucleotide position in the UCSC genome browser coordinates, February 2009 version (hg19). Bold sequences are novel sequences that have never been deposited to any databases. Boxes indicate nucleotide insertions. Total numbers of chimeric read pairs and soft-clipped reads are described, cen: centromere, tel: telomere

References

- 1. Feuk, L., Carson, A.R. & Scherer, S.W. Structural variation in the human genome. *Nature reviews. Genetics.* **7**, 85-97 (2006).
- Utami, K.H., Hillmer, A.M., Aksoy, I., Chew, E.G., Teo, A.S., Zhang, Z. et al. Detection of chromosomal breakpoints in patients with developmental delay and speech disorders. *PloS one*.
 9, e90852 (2014).
- 3. Vandeweyer, G. & Kooy, R.F. Balanced translocations in mental retardation. *Human genetics*. **126**, 133-147 (2009).
- 4. Fantes, J.A., Boland, E., Ramsay, J., Donnai, D., Splitt, M., Goodship, J.A. et al. FISH mapping of de novo apparently balanced chromosome rearrangements identifies characteristics associated with phenotypic abnormality. *American journal of human genetics*. **82**, 916-926 (2008).
- 5. Rizzolio, F., Bione, S., Sala, C., Goegan, M., Gentile, M., Gregato, G. et al. Chromosomal rearrangements in Xq and premature ovarian failure: mapping of 25 new cases and review of the literature. *Human reproduction*. **21**, 1477-1483 (2006).
- 6. Imaizumi, K., Kimura, J., Matsuo, M., Kurosawa, K., Masuno, M., Niikawa, N. et al. Sotos syndrome associated with a de novo balanced reciprocal translocation t(5;8)(q35;q24.1).

 American journal of medical genetics. 107, 58-60 (2002).
- 7. Dong, Z., Jiang, L., Yang, C., Hu, H., Wang, X., Chen, H. et al. A Robust Approach for Blind

 Detection of Balanced Chromosomal Rearrangements with Whole-Genome Low-Coverage

- Sequencing. Human mutation. (2014).
- 8. Schluth-Bolard, C., Labalme, A., Cordier, M.P., Till, M., Nadeau, G., Tevissen, H. et al. Breakpoint mapping by next generation sequencing reveals causative gene disruption in patients carrying apparently balanced chromosome rearrangements with intellectual deficiency and/or congenital malformations. *Journal of medical genetics.* **50**, 144-150 (2013).
- 9. Abel, H.J. & Duncavage, E.J. Detection of structural DNA variation from next generation sequencing data: a review of informatic approaches. *Cancer genetics.* **206**, 432-440 (2013).
- 10. Saitsu, H., Osaka, H., Sugiyama, S., Kurosawa, K., Mizuguchi, T., Nishiyama, K. et al. Early infantile epileptic encephalopathy associated with the disrupted gene encoding Slit-Robo Rho GTPase activating protein 2 (SRGAP2). *American journal of medical genetics. Part A.* **158A**, 199-205 (2012).
- 11. Saitsu, H., Igarashi, N., Kato, M., Okada, I., Kosho, T., Shimokawa, O. et al. De novo 5q14.3 translocation 121.5-kb upstream of MEF2C in a patient with severe intellectual disability and early-onset epileptic encephalopathy. *American journal of medical genetics. Part A.* **155A**, 2879-2884 (2011).
- 12. Nishimura-Tadaki, A., Wada, T., Bano, G., Gough, K., Warner, J., Kosho, T. et al. Breakpoint determination of X;autosome balanced translocations in four patients with premature ovarian failure. *Journal of human genetics.* **56**, 156-160 (2011).

- 13. Kurotaki, N., Imaizumi, K., Harada, N., Masuno, M., Kondoh, T., Nagai, T. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. *Nature genetics*. **30**, 365-366 (2002).
- 14. Saitsu, H., Kurosawa, K., Kawara, H., Eguchi, M., Mizuguchi, T., Harada, N. et al. Characterization of the complex 7q21.3 rearrangement in a patient with bilateral split-foot malformation and hearing loss. *American journal of medical genetics. Part A.* **149A**, 1224-1230 (2009).
- Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
 Bioinformatics (Oxford, England). 25, 1754-1760 (2009).
- 16. Chen, K., Wallis, J.W., McLellan, M.D., Larson, D.E., Kalicki, J.M., Pohl, C.S. et al. BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. *Nature methods*. **6**, 677-681 (2009).
- 17. Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Briefings in bioinformatics*. 14, 178-192 (2013).

Table 1 Detection of chromosomal breakpoints by BreakDancer (Translocation or inversion)

								IGV		_
Patient	Karyotype	Breakpoint detection by other methods (hg19)	Mean coverage (x)	preparation	PCR duplication (%)	BreakDancer detection	Chimeric read pair counts	Discordant read pair counts	Soft-clipped read counts	References
1	46,XX,t(1;9)(q32;q13)	der(1): 206574512 der(9): undetermined	15.23	PCR-free	1.6	der(1): negative der(9): negative	der(1): 0 der(9): 0	-	der(1): 1 der(9): 0	Saitsu et al. (2012) [10]
2	46,XX,t(5;15)(q13.3;q26.1)	der(5): 88300578 der(15): 98166676	9.18	PCR	7.0	der(5): positive der(15): positive	der(5):14 der(15):14	-	der(5): 0 der(15): 0	Saitsu et al. (2011) [11]
3	46,X,t(X;4)(q21.3;p15.2)	der(X): 107436209 der(4): 12244290	21.92	PCR-free	1.9	der(X): positive der(4): positive	der(X):14 der(4):12	-	der(X): 5 der(4): 2	Nishimura-Tadaki et al. (2011) [12]
4	46,XX,t(7;15)(q21;q15)	der(7): 96377471 der(15): 45376277	18.49	PCR-free	1.8	der(7): positive der(15): positive	der(7):18 der(15):18	-	der(7): 0 der(15): 4	Saitsu et al. 2009 [14]
4	46,XX,t(9;14)(q21;q11.2)	der(9): undetermined der(14): undetermined	10.49	r Olvillee	1.0	der(9): positive der(14): positive	der(9):31 der(14):31	-	chr(9): 3 der(14): 5	Salisu et al. 2009 [14]
5	46,X,t(X;2)(q22;p13)	der(X): 107946031 der(2): 66226306	20.35	PCR-free	2.1	der(X): negative der(2): negative	der(X): 0 der(2): 0	-	der(X): 0 der(2): 0	Nishimura-Tadaki et al. (2011) [12]
6	46,X,t(X;4)(q22.1;q12)	der(X): 101594056 der(4): 57969312	11.69	PCR	45.8	der(X): positive der(4): positive	der(X):20 der(4):20	-	der(X) : 0 der(4): 0	Nishimura-Tadaki et al. (2011) [12]
7	46,X,t(X;14)(q24;q32.1)	der(X): 117318221 der(14):91614197	12.93	PCR	21.3	der(X): positive der(14): positive	der(X):24 der(14):24	-	der(X) 2 der(14): 0	Nishimura-Tadaki et al. (2011) [12]
8	46,XX,t(5;8)(q35;q24.1)	undetermined	5.95	PCR-free	1.2	der(5): positive der(8): positive	der(5):14 der(8):14	-	der(5): 2 der(8): 2	Imaizumi et al. (2002) [6] Kurotaki et al. (2002) [13]
9	Inv(5)(p15q13)	undetermined	14.37	PCR-free	1.8	5p15:positive 5q13:positive	-	chr5:28 (inversion)	5p15: 3 5q13:6	This study

Abbreviation: IGV, Integrative Genomics Viewer.

Bold numbers and text indicate the detection failure.

Table 2 Detection of chromosomal breakpoints by BreakDancer (Deletion)

		IGV			
Patient	Breakpoint detection by other methods (hg19)	BreakDancer detection	Discordant read pair counts	Soft-clipped read counts	
3	chrX:107,436,210-107,440,401	chrX: negative	chrX:0	chrX: 0	
3	chr4: 12,237,261-12,244,289	chr4: negative	chr4: 0	chr4: 0	
4	chr7:96,949,067-97,755,363	chr7: positive	chr7:9	chr7: 2	
4	chr15: undetermined	chr15: negative	chr15: 0	chr15: 0	

Abbreviation: IGV, Integrative Genomics Viewer.

Supplementary Information

Precise detection of chromosomal translocation or inversion breakpoints by whole genome

sequencing

Toshifumi Suzuki · Yoshinori Tsurusaki · Mitsuko Nakashima · Noriko Miyake · Hirotomo

Saitsu · Satoru Takeda · Naomichi Matsumoto

Correspondence to:

Naomichi Matsumoto

Department of Human Genetics, Yokohama City University Graduate School of Medicine,

Yokohama 236-0004, Japan

Tel.: +81-45-787-2606

Fax: +81-45-786-5219

E-mail: naomat@yokohama-cu.ac.jp (N. Matsumoto)

Supplementary Information

• Supplementary Tables 1–4

• Supplementary Figures 1-2

1

Supplementary Table 1 PCR duplication in whole genome sequencing

Patient	Mean	coverage (x)	PCR duplication (%)			
	TruSeq DNA Sample Prep Kit	TruSeq DNA PCR-Free Sample Prep Kit	TruSeq DNA Sample Prep Kit	TruSeq DNA PCR-Free Sample Prep Kit		
Patient 1	6.35	6.82	56.7	1.4		
Patient 3	10.32	10.13	10.7	1.6		
Patient 4	5.94	7.68	50.5	1.5		
Patient 5	3.25	9.55	71.8	1.7		
Patient 9	1.77	5.06	80.7	0.5		

$Supplementary\ Table\ 2\ Numbers\ of\ inter-chromosomal\ translocation\ or\ inversion\ reads$

Patient	1	2	3	4	5	6	7	8	9
Numbers of CTX or INV reads	126	204	133	134	137	4,698	1,080	61	389
Numbers of reads involving targeted chromosome(s)	chr1/chr9: 1	chr5/chr15: 1	chrX/chr4: 2	chr7/15: 8 chr9/14: 1	chrX/chr2: 1	chrX/chr4: 39	chrX/chr14: 3	chr5/chr8: 1	chr5: 24
Numbers of genuine read covering SV breakpoints	0	chr5/chr15: 1	chrX/chr4: 2	chr7/15: 1 chr9/14: 1	0	chrX/chr4: 1	chrX/chr14: 1	chr5/chr8: 1	chr5:1

CTX : inter-chromosomal translocation, INV : inversion

Supplementary Table 3-1 List of soft-clipped reads covering SV breakpoints

Supplementary Table 3-1 List of soft-clipped reads covering SV breakpoints

patient	soft-clipped reads*	derivative chromosome	read_start (bps)	read_end (bps)	start position	end position	unknown sequence
1	1	der(1)	1	88	chr1: 206574425	chr1: 206574512	-
	Į.	der(1)	89	101	-	-	TATTCGATTGGAA
			1	88	chrX: 107436122	chrX: 107436209	-
	1	der(X)	89	93	-	-	TACAG
			94	101	chr4:12237260	chr4:12237267	-
			1	90	chrX: 107436120	chrX: 107436209	-
	2	der(X)	91	95	-	-	TACAG
			96	101	chr4:12237260	chr4:12237265	-
			1	54	chr4:12237207	chr4:12237260	
	3	der(X)	55	59	-	-	CTGTA (-strand)
			60	101	chrX:107436209	chrX:107436168	
			1	85	chr4:12237176	chr4:12237260	
3	4	der(X)	86	90			CTGTA (-strand)
			91	101	chrX:107436209	chrX:107436219	
			1	66	chr4:12237195	chr4:12237260	
	5	der(X)	67	71	-	-	CTGTA (-strand)
			72	101	chrX:107436209	chrX:107436180	
			1	12	chrX:107440391	chrX:107440402	-
	1	der(4)	13	15	-	-	GAG
			16	101	chr4: 12244290	chr4: 12244375	-
			1	13	chrX:107440390	chrX:107440402	-
	2	der(4)	14	16	-	-	GAG
			17	101	chr4: 12244290	chr4: 12244374	-
	1	der(15)	1	54	chr15: 45376224	chr15: 45376277	-
	'	dei(15)	53	101	chr7: 96377469	chr7: 96377517	-
•	2	d==(4.F)	1	90	chr15: 45376188	chr15: 45376277	-
4	2	der(15)	89	101	chr7: 96377469	chr7: 96377481	-
4	3	d==(4.E)	1	76	chr15: 45376202	chr15: 45376277	-
	3	der(15)	75	101	chr7: 96377469	chr7: 96377495	-
•	4	1/45)	1	64	chr15: 45376214	chr15: 45376277	-
	4	der(15)	63	101	chr7: 96377469	chr7: 96377507	-
		1(0)	1	97	chr9: 80735757	chr9: 80735853	-
	1	der(9)	98	101	chr14:23270388	chr14:23270391	-
	2	d==(0)	1	90	chr9:80735764	chr9:80735853	-
	2	der(9)	91	101	chr14:23270388	chr14:23270398	-
		1(0)	1	68	chr9:80735786	chr9:80735853	-
	3	der(9)	69	101	chr14:23270388	chr14:23270420	-
		1(4.4)	1	84	chr14: 23270320	chr14: 23270383	
	1	der(14)	84	101	chr9:80735853	chr9:80735870	
4		1(4.4)	1	86	chr14: 23270318	chr14: 23270383	
	2	der(14)	86	101	chr9:80735853	chr9:80735868	-
		1(4.4)	1	88	chr14: 23270316	chr14: 23270383	
	3	der(14)	88	101	chr9: 80735853	chr9:80735866	-
			1	11	-	-	TATTTGTTATA
	4	der(14)	12	63	chr14: 23270332	chr14: 23270383	-
		۵۵.(۱.۱)	63	101	chr9: 80735853	chr9: 80735891	
	_	1(4.4)	1	89	chr14: 23270315	chr14: 23270383	-
	5	der(14)	89	101	chr9:80735853	chr9:8735865	
		, -	1	54	chr7: 96949012	chr7: 96949065	-
	1(DEL)	chr7	55	101	chr7: 97755361	chr7: 97755407	-
4			1	53	chr7:96949013	chr7: 96949065	-
	2(DEL)	chr7	54	101	chr7: 97755361	chr7: 97755408	-
			0-1	101	5.47. 577 55501	37. 377 30 700	

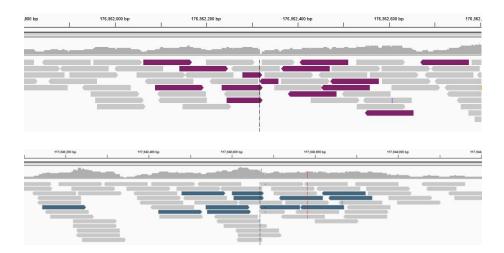
^{*:} each read is numbered. Red characters indicate exact breakpoint positions and sequences.

Supplementary Table 3-2 List of soft-clipped reads covering SV breakpoints

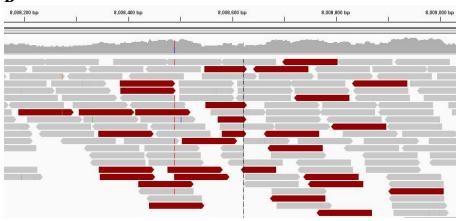
Supplementary Table 3-2 List of soft-clipped reads covering SV breakpoints

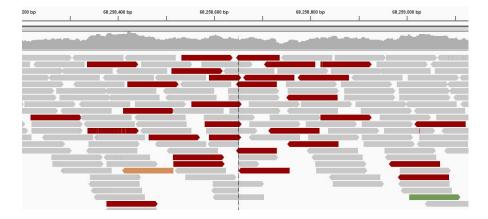
patient	soft-clipped reads*	derivative chromosome	read_start (bps)	read_end (bps)	start position	end position	unknown sequence
	4	dor(V)	1	87	chrX: 117318137	chrX: 117318223	-
7	I	der(X)	86	101	chr14: 91614203	chr14: 91614218	-
,	2	dor(V)	1	79	chrX: 117318145	chrX: 117318223	-
	2	der(X)	78	101	chr14: 91614203	chr14: 91614226	=
			1	84	chr5: 176562234	chr5: 176562317	-
	1	der(5)	85	93	-	-	TCACATTGG
			94	101	chr8: 117943670	chr8: 117943677	-
			1	73	chr5: 176562245	chr5: 176562317	-
	2	der(5)	74	83	-	-	TCACATTGG
8			84	101	chr8: 117943670	chr8: 117943687	-
•			1	68	chr8: 117943605	chr8: 117943672	-
	1	der(8)	69	76	-	-	AACAAGAT
			77	101	chr5: 176562322	chr5: 176562346	-
			1	72	chr8: 117943601	chr8: 117943672	-
	2	der(8)	73	80	-	-	AACAAGAT
			81	101	chr5: 176562322	chr5: 176562342	-
	1	5parm.	1	76	chr5: 8008547	chr5: 8008622	-
	ı	5parm	76	101	chr5: 68258651	chr5: 68258626	-
•	2	5parm	1	74	chr5: 8008549	chr5: 8008622	-
			74	101	chr5: 68258651	chr5: 68258624	
	3	5parm	1	38	chr5: 68258688	chr5: 68258651	-
	ა		39	101	chr5: 8008622	chr5: 8008684	-
	1	5qarm	1	16	chr5:8008743	chr5:8008758	=
	· ·	Sqaiii	17	101	chr5: 68258651	chr5: 68258735	-
	2	5garm	1	62	chr5: 68258590	chr5: 68258651	-
9	2	Sqaiii	62	101	chr5: 8008622	chr5: 8008583	-
			1	=	=	=	С
	3	5qarm	2	22	chr5: 8008642	chr5: 8008622	-
			23	101	chr5: 68258651	chr5: 68258729	-
	4	5qarm	1	71	chr5: 68258581	chr5: 68258651	-
	4	Sqaiii	71	101	chr5: 8008622	chr5: 8008593	-
	5	5qarm	1	62	chr5: 68258590	chr5: 68258651	-
_	<u> </u>	Jyann	62	101	chr5: 8008622	chr5: 8008583	
	6	5qarm	1	22	chr5: 8008643	chr5: 8008622	-
	U	Syann	23	101	chr5: 68258651	chr5: 68258729	=

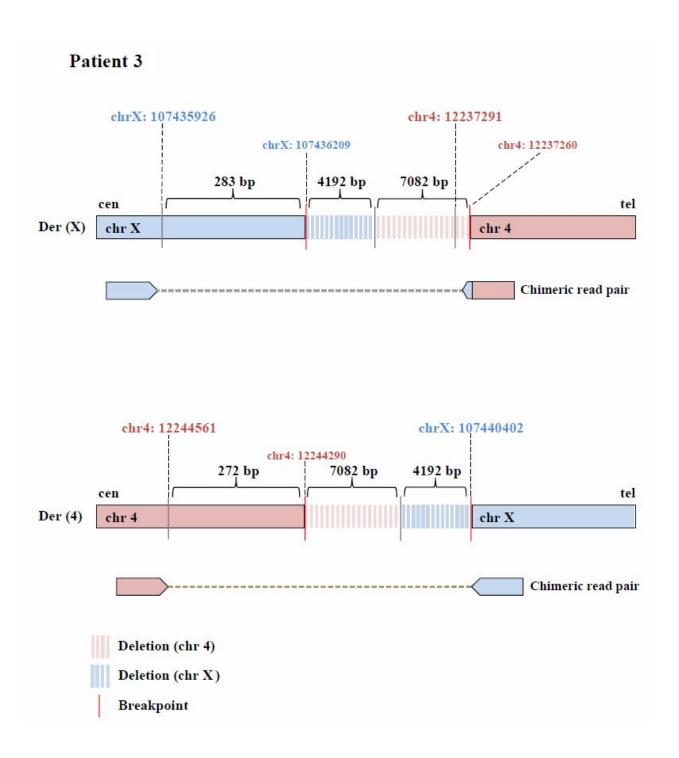
^{*:} each read is numbered. Red characters indicate exact breakpoint positions and sequences.

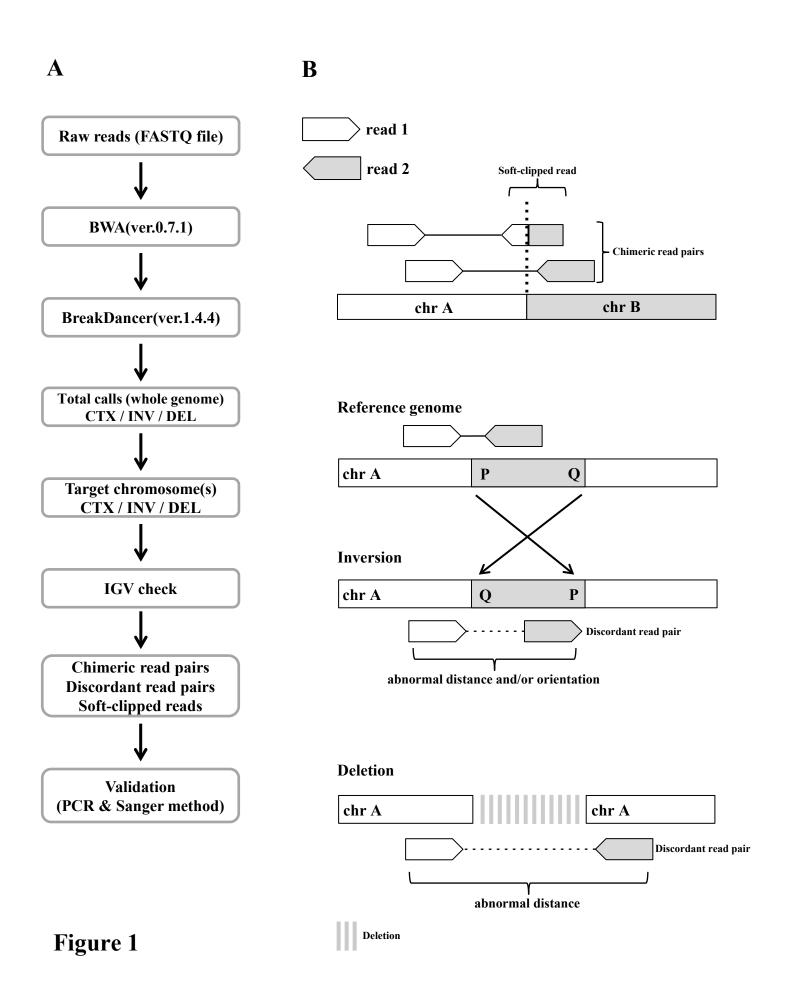

Supplementary Table 4 Numbers of deletion reads by BreakDancer.

Supplementary Table 4 Numbers of deletion reads by BreakDancer.


Patient		3	4		
Chromosome	4	Х	7	15	
Deletion position	chr4:12,237,261- 12,244,289	chrX:107,436,210- 107,440,401	chr7:96,949,067- 97,755,363	Undetermined	
Deletion size (bp)	7,029	4,192	806,297	Undetermined	
Number of called reads for DEL	1,945	1,945	1,943	1,943	
Targeted chromosome	159	51	128	58	
Number of accurate DEL reads	0	0	1	0	


DEL: deletion


В


Supplementary Figure 1. IGV images at around breakpoints.

A. Patient 8. Purple and dark green directed lines were chimeric read pairs covering translocation breakpoints. Chromosomes 5 (upper) and 8 (lower) are shown. Black vertical dot lines indicate translocation breakpoints. B. Patient 9. Maroon directed lines were discordant read pairs spanning inversion breakpoint. Upper panel shows 5p inversion breakpoint and lower indicate 5q inversion breakpoint. Black vertical dot lines indicate breakpoint locations. Orange and green directed lines in the lowest panel were chimeric read pairs whose other-end reads were mapped to chromosomes 14 (orange) and 3 (green).

Supplementary Figure 2. Schematic presentation of the chromosomal translocation and deletion in Patient 3.

Blue and red boxes indicate chromosomes X and 4. The upper panel indicates derivative X and the lower shows derivative 4 chromosome. Red and blue horizontal thick lines represent deletions of chromosome 4 and X. Red vertical lines indicate chromosomal breakpoints. Two chimeric read pairs were called by BreakDancerMax.

Translocation or inversion breakpoints

Deletion breakpoints

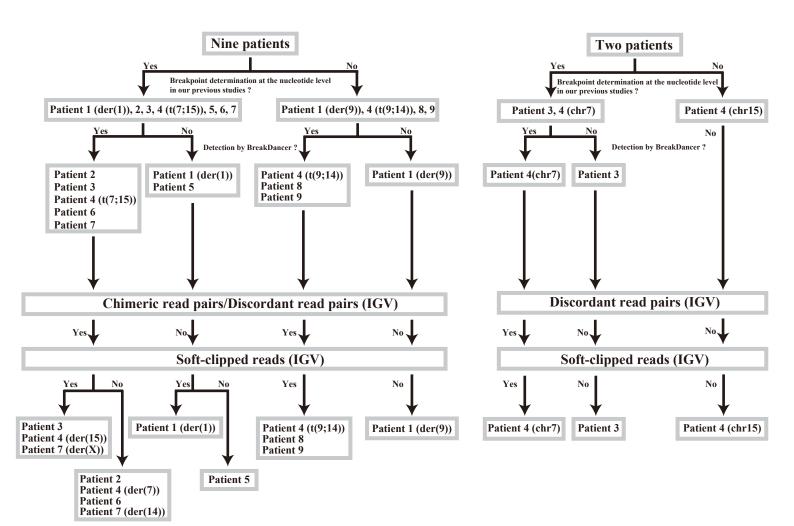


Figure 2

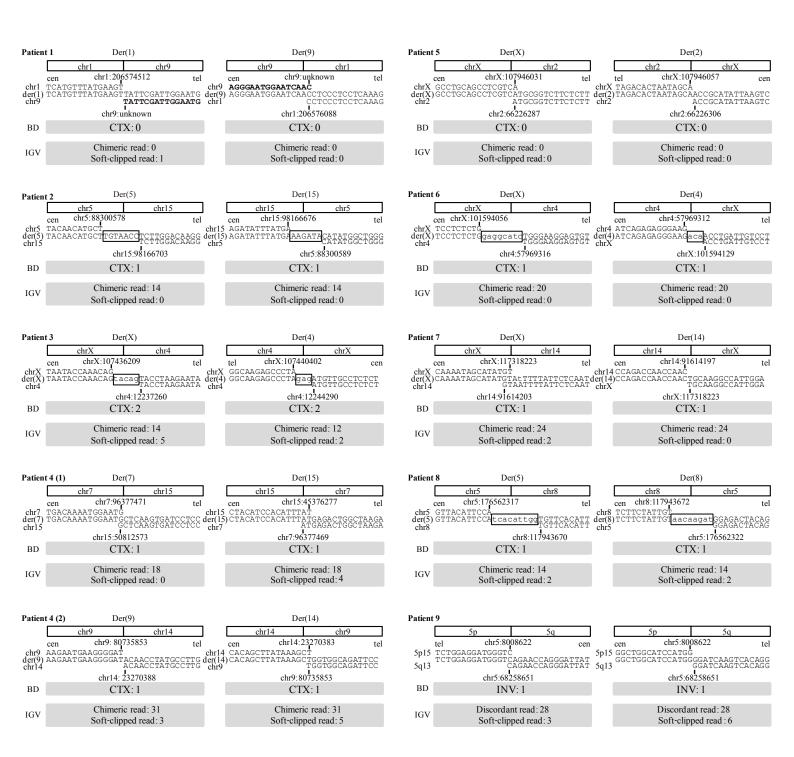


Figure 3

Table 1 Detection of chromosomal breakpoints by BreakDancer (Translocation or inversion)

								IGV		
Patient	Karyotype	Breakpoint detection by	Mean	preparatio	PCR duplication	BreakDancer	Chimeric read pair	Discordant read	Soft-clipped	References
1 attent	rai yotype	other methods (hg19)	coverage	n	(%)	detection	counts	pair counts	read counts	References
1	46,XX,t(1;9)(q32;q13)	der(1): 206574512	15.23	PCR-free	1.6	der(1): negative		-	der(1): 1	Saitsu et al. (2012) [10]
		der(9): undetermined				der(9): negative	. ,		der(9): 0	
2	46,XX,t(5;15)(q13.3;q26.1	der(5): 88300578	9.18	PCR	7.0	der(5): positive	der(5):14	_	der(5): 0	Saitsu et al. (2011) [11]
_	10,7 5 1,1(0,10)(4,1010,4201)	' der(15): 98166676	00			der(15): positive	der(15):14		der(15): 0	
3	46,X,t(X;4)(q21.3;p15.2)	der(X): 107436209	21.92	PCR-free	1.9	der(X): positive	der(X):14	_	der(X): 5	Nishimura-Tadaki et al. (2011) [12]
	+0,7,1(7,+)(q21.0,p10.2)	der(4): 12244290	21.02	1 OIL HOO	1.0	der(4): positive	der(4):12		der(4): 2	Mishimura Tadaki et al. (2011) [12]
	46 VV +(7:45)(~24:~45)	der(7): 96377471				der(7): positive	der(7):18		der(7): 0	
4	46,XX,t(7;15)(q21;q15)	der(15): 45376277	18.49	PCR-free	1.8	der(15): positive	der(15):18	•	der(15): 4	Saitsu et al. 2009 [14]
4	4C VV +(0.4.4)/~24.~44.2)	der(9): undetermined	10.49	PCK-liee	1.0	der(9): positive	der(9):31		chr(9): 3	Salisu et al. 2009 [14]
	46,XX,t(9;14)(q21;q11.2)	der(14): undetermined				der(14): positive	der(14):31	-	der(14): 5	
	10.1/1/1/101/100 101	der(X): 107946031	00.05	DOD (0.4	der(X): negative			der(X): 0	N: 1: T 1: ((0044) 140]
5	46,X,t(X;2)(q22;p13)	der(2): 66226306	20.35	PCR-free	2.1	der(2): negative	der(2): 0	-	der(2): 0	Nishimura-Tadaki et al. (2011) [12]
_		der(X): 101594056				der(X): positive	der(X):20		der(X) :0	
6	46,X,t(X;4)(q22.1;q12)	der(4): 57969312	11.69	PCR	45.8	der(4): positive	der(4):20	-	der(4): 0	Nishimura-Tadaki et al. (2011) [12]
		der(X): 117318221				der(X): positive	der(X):24		der(X) 2	
7	46,X,t(X;14)(q24;q32.1)	der(14):91614197	12.93	PCR	21.3	der(14): positive	` '	-	der(14): 0	Nishimura-Tadaki et al. (2011) [12]
		` '				der(5): positive	der(5):14		der(5): 2	Imaizumi et al. (2002) [6]
8	46,XX,t(5;8)(q35;q24.1)	undetermined	5.95	PCR-free	1.2	der(8): positive	der(8):14	-	der(8): 2	Kurotaki et al. (2002) [13]
						5p15:positive	uci(0). 17	chr5:28	5p15: 3	Narotan et al. (2002) [10]
9	Inv(5)(p15q13)	undetermined	14.37	PCR-free	1.8	• •	-		•	This study
						5q13:positive		(inversion)	5q13:6	

Abbreviation: IGV, Integrative Genomics Viewer.

Bold numbers and text indicate the detection failure.

Table 2 Detection of chromosomal breakpoints by BreakDancer (Deletion)

		IGV				
Patient	Breakpoint detection by other methods (hg19)	BreakDancer detection	Discordant read pair counts	Soft-clipped read counts		
3	chrX:107,436,210-107,440,401	chrX: negative	chrX: 0	chrX: 0		
3	chr4: 12,237,261-12,244,289	chr4: negative	chr4: 0	chr4: 0		
4	chr7:96,949,067-97,755,363	chr7: positive	chr7:9	chr7: 2		
	chr15: undetermined	chr15: negative	chr15: 0	chr15: 0		

Abbreviation: IGV, Integrative Genomics Viewer.