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Abstract 

Background: Chloroquine treatment for Plasmodium falciparum has been discontinued in almost all endemic 
regions due to the spread of resistant isolates. Reversal of chloroquine susceptibility after chloroquine discontinuation 
has been reported in dozens of endemic regions. However, this phenomenon has been mostly observed in Africa 
and is not well documented in other malaria endemic regions. To investigate this, an ex vivo study on susceptibility to 
chloroquine and lumefantrine was conducted during 2016–2018 in Wewak, Papua New Guinea where chloroquine 
had been removed from the official malaria treatment regimen in 2010. Genotyping of pfcrt and pfmdr1 was also 
performed.

Results: In total, 368 patients were enrolled in this study. Average  IC50 values for chloroquine were 106.6, 80.5, and 
87.6 nM in 2016, 2017, and 2018, respectively. These values were not significantly changed from those obtained in 
2002/2003 (108 nM). The majority of parasites harboured a pfcrt K76T the mutation responsible for chloroquine resist‑
ance. However, a significant upward trend was observed in the frequency of the K76 (wild) allele from 2.3% in 2016 to 
11.7% in 2018 (P = 0.008; Cochran–Armitage trend test).

Conclusions: Eight years of chloroquine withdrawal has not induced a significant recovery of susceptibility in Papua 
New Guinea. However, an increasing tendency of parasites harbouring chloroquine‑susceptible K76 suggests a pos‑
sibility of resurgence of chloroquine susceptibility in the future.
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Background
Malaria is still one of the three major infectious diseases 
worldwide with 216 million cases and 445,000 deaths 
over 100 countries in 2016 [1]. Although new sustain-
able development goals have proposed to end malaria 
epidemic by 2030 [2], emergence and spread of drug-
resistant parasites could be a major obstacle for this 
achievement. Plasmodium falciparum parasites resistant 

to artemisinin-based combination therapy (ACT), the 
current first-line treatment for uncomplicated malaria, 
have already spread across the Greater Mekong sub-
region [3]. However, licensed anti-malarial drugs that 
possess similar levels of efficacy as artemisinins have 
not yet been obtained. Under such circumstances, an 
approach that rotates licensed anti-malarial drugs is sug-
gested to be a potential strategy to combat drug-resist-
ant parasites. Chloroquine is a candidate drug that is 
potentially applicable to such a strategy. This is because 
chloroquine-susceptible parasites have outcompeted the 
resistant parasites and have expanded in the absence 
of chloroquine selecting pressure [4–6]; subsequently, 
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chloroquine susceptibility has been recovered several 
years after its discontinuance in many endemic regions, 
particularly in Africa [7–13]. However, a lack of this phe-
nomenon has been also reported in some African and 
other endemic regions [14–16]. Therefore, the extent of 
this reversal across malaria-endemic countries is not fully 
understood [17].

In Papua New Guinea, since the first report of chloro-
quine-resistant P. falciparum parasite in the 1970s [18], 
resistant parasites have spread across the area. The clini-
cal efficacy of chloroquine reached unacceptable levels 
by the mid-1990s [19, 20]. In 2000, a combination regi-
men of chloroquine or amodiaquine plus sulphadoxine–
pyrimethamine was introduced as a first-line treatment 
for uncomplicated malaria. However, treatment failure 
of these regimens against P. falciparum reached 11–29% 
during 2003–2005 as assessed at day 28 [21], and 15% 
during 2005–2007 [22]. In 2010, chloroquine was com-
pletely removed from the official treatment regime and 
artemether plus lumefantrine was officially introduced 
as a first-line regimen for uncomplicated malaria. Fol-
lowing this discontinuance, change in the average 50% 
growth inhibitory concentration  (IC50) to chloroquine 
was reported as 167  nM during 2005–2007 to 87  nM 
during 2011–2013 in the Madang Province [23]. How-
ever, this  IC50 value was still much higher than those 
reported in regions with reversal of chloroquine sus-
ceptibility such as Kenya (22.4  nM) [12] and Senegal 
(34.8  nM) [10]. Additionally, almost all parasites in the 
Madang study still harboured a chloroquine-resistant 
allele (K76T mutation) in the P. falciparum chloroquine-
resistance transporter (pfcrt). These results indicate that 
a complete recovery of chloroquine susceptibility after its 
withdrawal has not been evidenced in Papua New Guinea 
and warrants further investigation. An ex vivo study was 
therefore performed in 2016–2018, 6–8 years after chlo-
roquine withdrawal in Wewak district, East Sepik Prov-
ince, in which the ex  vivo drug susceptibility study was 
previously conducted during 2002–2003 [24].

Methods
Study design and sites
Three cross-section studies for ex  vivo malaria drug 
resistance targeted in symptomatic P. falciparum-
infected patients were carried out at two clinics (Wirui 
Urban and Town) in Wewak District of East Sepik Prov-
ince in Papua New Guinea. The studies began in January 
and ended in February in 2016 and in 2017 and from Feb-
ruary to March in 2018. The average temperature in the 
studied area is 27.3  °C (min 23.8  °C, max 30.9  °C) with 
an annual rainfall of approximately 3000  mm. All four 
species of human malaria parasites were observed with 
limited seasonal variations between the wet (October 

to April) and dry (May to September) seasons and were 
transmitted mainly by Anopheles farauti, Anopheles 
punctulatus, and Anopheles koliensis [20, 25, 26].

The Government of Papua New Guinea implemented 
the first country-wide free distribution of long-lasting 
insecticidal mosquito nets (LLIN) with financial sup-
port from the Global Fund to Fight AIDS, tuberculosis, 
and malaria between 2005 and 2009 (round 3 grant) and 
between 2009 and 2013 (round 8 grant) [27]. The aver-
age LLIN usage was 55% in 2008 and 2009 [28] and 
32.9–67.7% during 2013–2014 [29]. The mean Anopheles 
man biting rate was 31 bites/person/night, which is much 
lower than that (83 bites/person/night) observed in the 
pre-LLIN distribution period [30]. Malaria prevalence 
has been considerably decreased in all endemic regions; 
the overall prevalence of all species was 11.1% (2008–
2009), 5.1% (2010–2011), and 0.9% (2013–2014) [29]. The 
current first-line regime includes artemether plus lume-
fantrine, which was officially introduced in 2010.

Ethical approvals were obtained from the Medical 
Research Ethical Committee of Juntendo University (No. 
13-016) and the Medical Research Advisory Committee 
of Papua New Guinea National Department of Health 
(No. 14.22. & 16.41.).

Patients and blood collection
In both studied clinics, P. falciparum infection was 
screened using a Rapid Diagnosis Test (RDT) (Car-
eStart™ Malaria HRP2/pLDH COMBO Test kit, Access 
Bio, USA) in patients (> 1  year of age) with symptoms 
suspected of malaria such as axillary temperature above 
37.5  °C or a fever during the previous 24 h, as reported 
by the family. When a P. falciparum-positive result was 
obtained, patients were enrolled after obtaining informed 
consent from the patients or guardians. Blood samples 
were obtained by finger prick (< 2  years, 100–500  μL) 
or peripheral venipuncture (≥ 2  years, 1  mL) and col-
lected into EDTA-containing tubes and immediately 
transferred to the central laboratories at Wewak General 
Hospital. Thick and thin blood smears were prepared 
and stained with 2% Giemsa for 30  min. Blood samples 
showing parasitaemia ≥ 0.05% were used for both ex vivo 
anti-malarial susceptibility assays and molecular analy-
sis. Samples showing parasitaemia < 0.05% were used for 
molecular analysis alone. For molecular analysis, blood 
samples were transferred onto chromatography filter 
paper (ET31CHR; Whatman Limited, Kent, UK) and sep-
arated in a plastic bag after drying at a normal tempera-
ture and stored at −  20  °C. Species-specific polymerase 
chain reactions (PCRs) were performed to confirm P. fal-
ciparum infections, as previously described [31].
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Ex vivo anti‑malarial susceptibility assays
Ex vivo assays were performed to determine anti-malar-
ial susceptibility to chloroquine and lumefantrine. After 
removing the plasma and buffy coat, erythrocyte pel-
lets were washed thrice in complete RPMI1640 medium 
(Thermo Fisher Scientific Inc., Waltham, MA, USA) 
with 0.225  mg/mL gentamicin. Washed pellets were 
suspended in the 2.5% haematocrit of culture medium; 
RPMI-1640 containing 25 mM HEPES and 2 mM l-glu-
tamine supplemented with 0.25  mg/mL gentamicin and 
heat-inactivated 10% serum from O blood type Japanese 
volunteers. Parasite density was adjusted to 0.05% with 
O type erythrocytes from Japanese volunteers. Next, 
100  μL of parasite culture was added to each well of a 
96-well culture plate, which was pre-dosed with chlo-
roquine: 0, 25, 50, 100, 200, 400, 800, and 1600  nM or 
lumefantrine: 0, 1.25, 2.5, 5, 10, 20, 40, and 80 nM. The 
sample-applied plates were then incubated at 37  °C for 
72 h in a gas atmosphere (5%  CO2, 5%  O2) created using 
the  AnaeroPack® malaria culture system (Mitsubishi 
Gas Chemical Company Inc., Tokyo, Japan). Samples 
were then frozen (−  20  °C overnight) and thawed until 
complete haemolysis was obtained. Parasite growth was 
assessed using an enzyme-linked immunosorbent assay 
(ELISA) that quantifies parasite histidine-rich protein-2 
(HRP-2) as reported previously [32]. The effective con-
centration needed to inhibit P. falciparum growth by 50% 
 (IC50) was established by non-linear regression using an 
online ICEstimator software (http://www.antim alari al-
icest imato r.net) [33].

Multiplicity of infections (MOIs)
Plasmodium falciparum DNA was extracted from a 
quarter of a blood spot (25 µL) using the QIAamp DNA 
blood Mini Kit (QIAGEN, Hilden, Germany). MOIs or 
the number of clones per sample were determined by 
genotyping of merozoite surface protein 2 (msp2), the 
gene encoding the highly polymorphic locus MSP2, as 
reported previously [34]. Briefly, a nested multiplex PCR 
was performed to amplify 3D7 and/or FC27 family alleles 
using fluorescence-labelled family-specific primers with 
Tks Gflex DNA Polymerase (Takara Bio Inc., Japan) in a 
10-μL reaction mixture containing 1 μL of DNA template 
and 0.5  μM of each primer set. The nested PCR prod-
ucts were analysed by 2% agarose gel electrophoresis to 
select the samples for subsequent capillary electropho-
resis analysis. Size variations of nested PCR products 
were analysed using an Applied Biosystems 3130/3130xl 
Genetic Analyzer (Life Technologies, Carlsbad, Califor-
nia, USA) and determined with the Peak Scanner soft-
ware ver2.0 (Thermo Fisher Scientific). If minor peak 
heights were greater than one-third of the major peak 
height, these minor peaks were regarded as peaks from 

minor clones. Samples harbouring two or more alleles 
were interpreted as multiple-clonal infections.

Genotyping of pfcrt and pfmdr1
Polymorphisms at position 72–76 in pfcrt and at posi-
tions 86, 184, 1034, 1042, and 1246 in P. falciparum mul-
tidrug resistance-1 (pfmdr1), which are suggested to be 
associated with resistance to a variety of anti-malarial 
drugs [35], were determined by direct sequencing. An 
initial and nested PCR were performed with PrimeSTAR 
Max DNA Polymerase (Takara Bio Inc., Japan) in a 10-μL 
reaction mixture containing 1 μL of DNA template and 
0.5 μM of each primer set. Excess primers and unincor-
porated nucleotides of the nested PCR product were 
enzymatically removed using ExoSAP-IT Kit (Amersham 
Biosciences, Buckinghamshire, UK) and direct sequenc-
ing was performed (96 °C or 1 min, 25 cycles of 96 °C for 
30  s, 50  °C for 30  s, and 60  °C for 4 min, and 60  °C for 
1  min) using a BigDye Terminator v1.1 cycle sequenc-
ing kit on the Applied Biosystems 3130/3130xl Genetic 
Analyzer (Life Technologies, Carlsbad, California, USA). 
Samples with minor peaks of at least 50% in height 
compared to the major peak were considered mixed 
genotypes.

Allele frequencies (proportion of parasite clones in 
the parasite population that carry a given allele) of drug-
resistance genes were estimated using MalHaploFreq 
[36], a program that utilizes allele prevalence and MOI 
data to estimate allele frequencies with a maximum 
likelihood algorithm using the maximum likelihood 
methodology.

Statistical analysis
All statistical analyses were performed using R software 
(Version 3.3.3). Data was analysed using Chi-square test, 
Fisher’s exact test, Cochran–Armitage trend test, Jonck-
heere–Terpstrata test, and Welch’s t-test. P-value < 0.05 
was considered significant.

Results
Enrolled patients
Among a total of 453 patients recruited, 60, 7 and 18 
patients were diagnosed as P. vivax mono-infection, 
mixed infection with P. falciparum and P. vivax, and no 
malaria by using species-specific PCR and were removed 
from the enrolment. In total, 368 patients were enrolled 
for this study at two sampling clinics; 182 at Town clinic 
and 186 at Wirui Urban clinic. They are separated by 
about 2  km and nearly all background characteristics 
of enrolled patients were the same between the clin-
ics (Additional file  1). The only difference was found in 
the frequency of pre-treated patients, which was signifi-
cantly higher at Town clinic (11.5%) than that at Wirui 

http://www.antimalarial-icestimator.net
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clinic (3.2%) (P = 0.004, Chi-square test). The number 
of enrolled patients was similar for each year; 123 in 
2016,134 in 2017, and 111 in 2018. Background charac-
teristics of the enrolled patients did not significantly dif-
fer among the studied year.

Nearly 40% of the patients were 10 to 19  years old 
(Table  1). No severe case was enrolled in the study. 
Median initial parasitaemia was 0.14%, 0.33%, and 0.12% 
in 2016, 2017, and 2018, respectively. In total, 27 enrolled 
patients presented a history of ingesting anti-malarial 
drug(s) within 2  weeks. Artemether alone (n = 12) and 
chloroquine (n = 10) were the two most used forms of 
self-medication. These patients were removed from fur-
ther analysis, resulting in 341 patient samples.

Ex vivo susceptibility to chloroquine and lumefantrine
Among the 341 patient samples, 113 were excluded 
from the ex vivo drug-susceptibility assay because of low 
(< 0.05%) parasitaemia (n = 80) and lack of blood volume 
(n = 33); finally, blood samples from 228 patients were 
used in the ex vivo drug-susceptibility assay (62 in 2016, 
101 in 2017, and 65 in 2018). Among these, interpretable 
ex vivo drug susceptibility data that fulfilled the criteria 
for core analysis [37] were obtained in 174 assays for chlo-
roquine. However, as high confidence on the estimated 
 IC50 is tremendously important for this study, 36 results 
showing a ratio of high to low 95% confidence intervals 
for  IC50 > 2 were further excluded [33]. This resulted in a 
total of 138 estimated  IC50 values that almost completely 
fit with the inhibitory sigmoid Emax model (Table  2). 
Average  IC50 values to chloroquine were 106.6, 80.5, and 
87.6 nM in 2016, 2017, and 2018, respectively. Although 

Table 1 Characteristics of enrolled patients

IQR interquartile range, ND not determined

Characteristics 2016 (N = 123) 2017 (N = 134) 2018 (N = 111)

Sampling clinics; n (%)

 Wirui urban 89 (72.4) 40 (29.9) 57 (51.4)

 Town 34 (27.6) 94 (70.1) 54 (49.6)

Age; n (%)

 0–4 2 (1.6) 5 (3.7) 3 (2.7)

 5–9 13 (10.6) 19 (14.2) 19 (17.1)

 10–19 43 (35) 55 (41) 44 (39.6)

 20–29 28 (22.8) 32 (23.9) 24 (21.6)

 30–39 15 (12.2) 9 (6.7) 8 (7.2)

 40–49 11 (8.9) 6 (4.5) 7 (6.3)

 50 9 (7.3) 7 (5.2) 5 (4.5)

 Unknown 2 (1.6) 1 (0.7) 1 (0.9)

 Average 23.9 19.8 20.5

Sex; n (%)

 Male 53 (43.1) 57 (42.5) 57 (51.4)

 Female 69 (56.1) 76 (56.7) 53 (47.7)

 Unknown 1 (0.8) 1 (0.8) 1 (0.9)

Pretreatment; n (%)

 Artemether 3 (2.4) 4 (3.0) 5 (4.5)

 Artemether + lumefantrine 0 (0) 2 (1.5) 1 (0.9)

 Artemether + lumefantrine + primaquine 0 (0) 1 (0.8) 0 (0)

 Chloroquine 2 (1.6) 5 (3.7) 3 (2.7)

 Primaquine 1 (0.8) 0 (0) 0 (0)

Parasitemia; (%)

 Median (IQR) 0.14% (0.02%, 0.52%) 0.33% (0.1%, 0.88%) 0.12% (0.1%, 0.57%)

MOI; n

 1 98 113 ND

 2 13 9 ND

 3 1 0 ND

 Mean 1.13 1.07 ND
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these values were slightly lower than those obtained in 
the previous study during 2002/2003 in the same study 
area  (IC50 = 108 nM) [24], these differences were not sta-
tistically significant. Accordingly, a decreasing trend was 
not found in the average  IC50 values during 2016–2018 
(Jonckheere–Terpstrata test).

Ex vivo drug susceptibility assay for lumefantrine was 
performed in 99 patients in 2017, producing 85 interpret-
able results. A total of 11 cases that showed a ratio of high 
to low 95% confidence intervals for  IC50 > 2 were further 
removed, which resulted in a total of 74 final results. The 
mean  IC50 for lumefantrine was 4.6 nM.

Prevalence and frequencies of polymorphisms in pfcrt 
and pfmdr1
The prevalence of specific mutations in pfcrt and pfmdr1 
was determined (Additional file  2). Allele frequencies 
of pfcrt and pfmdr1 were also estimated based on the 
prevalence of these alleles and Multiplicity of infec-
tions (MOIs) using MalHaploFreq [36] (Table  3). In 
2018, because blood samples showing mixed alleles (ex, 
K76 + K76T in pfcrt) were not observed in both pfcrt and 
pfmdr1, allele frequencies were identical to allele preva-
lence and thus, MOIs were not determined in 2018. The 
maximum MOI detected was 3 and was observed in one 
sample (Table 1). Mean MOIs in 2017 (1.07) were slightly 
lower than those in 2016 (1.13), both of which were simi-
lar or slightly lower than those previously observed in 
highland areas [38].

Sequence analysis of codon 72–76 in pfcrt revealed 
two haplotypes, wild-type (CVMNK) and a mutant 
(SVMNT) (amino acids at positions 72–76, mutation 
underlined). The frequency of K76 depicted a significant 
upward trend: 2.3% in 2016, 10.4% in 2017, and 11.7% in 
2018 (P = 0.008; Cochran–Armitage trend test). Simi-
larly, a significant increase in the N86 allele in pfmdr1 
was observed: 58.7% in 2016, 71.2% in 2017, and 73.3% 
in 2018 (P = 0.006; Cochran–Armitage trend test). Mean-
while, no significant difference was found at position 184 
and 1042 in pfmdr1. All isolates possessed a wild-type 
allele at position 1034 and 1246 in pfmdr1.

Association between ex vivo  IC50 values for chloroquine 
and lumefantrine, and mutations in pfcrt and pfmdr1
Parasites harbouring the pfcrt K76T mutation depicted 
significantly higher  IC50 values for chloroquine (97.1 nM) 
than those harbouring K76 (19.5  nM) (P = 2.2 × 10−16, 
Welch t-test) (Fig. 1). In pfmdr1, the N86Y mutation was 
significantly associated with lower  IC50 values for lume-
fantrine (5.3 nM in N86Y vs. 10.9 nM in N86, P = 0.003, 
Welch t-test) (Fig.  2). Parasites harbouring a Y184F 
mutation showed significantly higher  IC50 values for 
chloroquine (122.1 nM) than those with Y184 (80.7 nM) 
(P = 0.04, Welch t-test).

To investigate the potential effect of Y184F in the aug-
mentation of chloroquine resistance in K76T harbouring 
parasites, average  IC50 values were compared between 
Y184 and Y184F in parasites with the pfcrt K76T muta-
tion (Additional file  3). The Y184F harbouring parasites 
displayed significantly higher  IC50 values (141.4  nM) 
than those of the Y184 harbouring parasites (90.2  nM) 

Table 2 Ex vivo susceptibility of clinical parasites of P. falciparum in Papua New Guinea

CI confidence intervals

Drug No Mean IC50 (95% CI)

2016 2017 2018

Chloroquine 138 106.6 nM (79.4 nM, 133.9 nM) 80.5 nM (68.6 nM, 92.3 nM) 87.6 nM 
(72.6 nM, 
102.5 nM)

Lumefantrine 74 – 4.6 (4.05 nM, 5.16 nM) –

Table 3 Allele frequencies in pfcrt and pfmdr1 

a Amino acids at positions 72–76, mutation underlined
b 95% confidential interval

2016 2017 2018

%  CIb(%) % CI(%) %

Pfcrta

 CVMNK 2.3 (0.5–6.1) 10.4 (5.9–16.5) 11.7

 SVMNT 97.7 (93.9–99.5) 89.6 (83.5–94.1) 88.3

Pfmdr1

 N86 58.7 (50–67.2) 71.2 (63.2–78.5) 73.3

 N86Y 41.3 (32.8–50) 28.8 (21.5–36.8) 26.7

 Y184 79.8 (72.2–86.3) 71.2 (63.2–78.5) 84.4

 Y184F 20.2 (13.7–27.8) 28.8 (21.5–36.8) 15.6

 S1034 100 100 100

 S1034C 0 0 0

 N1042 92 (85–96.6) 88.6 (81.4–93.9) 89

 N1042D 8 (3.4–15) 11.4 (6.1–18.6) 11

 D1246 100 100 100

 D1246Y 0 0 0
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(P = 0.02, Welch t-test), suggesting that the Y184F muta-
tion may augment the level of chloroquine resistance in P. 
falciparum parasites harbouring K76T in pfcrt.

Discussion
There are dozens of epidemiological studies showing 
that chloroquine-susceptible parasites replace resistant 
parasites in the absence of chloroquine selection [7–13]. 
However, the present analysis revealed a lack of substan-
tial recovery of chloroquine susceptibility at 6–8  years 
after the withdrawal of chloroquine in Papua New 
Guinea.

In nearly all endemic regions where chloroquine-sensi-
tive parasites re-emerged, reduction of parasites harbour-
ing a K76T mutation in pfcrt played a pivotal role towards 
this phenomenon [7–10, 12], though some exclusive 
regions have been reported, such as French Guiana [39]. 
This is because the K76T mutation imposes some fitness 
cost to the parasites [40–43]. A reverse genetic study 
evidenced that introduction of K76T into chloroquine-
susceptible clones induced a reduction in the growth rate 

[41, 42]. One suggested mechanism for this is that K76T 
harbouring parasites show functional impairment of 
haemoglobin digestion, which subsequently reduces the 
supply of amino acids required for parasite growth [41]. 
Fitness reduction of chloroquine-resistant parasites was 
also reported in mosquito stages; K76T-bearing parasites 
were less selected than K76-bearing parasites in Anoph-
eles arabiensis [40]. Because of these disadvantages, 
K76T-harbouring parasites have been outcompeted by 
K76-harbouring parasites in the absence of chloroquine 
pressure [4, 6]. In this study, pfcrt K76T harbouring para-
sites showed a significantly higher  IC50s than those in 
pfcrt K76 harbouring parasites. This observation is same 
as those observed in African endemic regions [11, 12], 
suggesting that an associated mechanism of chloroquine 
resistance would be common in parasites in Africa and 
Papua New Guinea. However, the majority of parasites 
still harboured the K76T allele and recovery of chloro-
quine susceptibility has not been observed even after 
withdrawal of chloroquine use. These observations sug-
gest that genetic change(s) other than K76T in pfcrt and/

0
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Fig. 1 Association between  IC50 values for chloroquine and polymorphisms in pfcrt and pfmdr1. Statistical significance was calculated using Welch’s 
t‑test



Page 7 of 10Sekihara et al. Malar J          (2018) 17:434 

or other unknown gene(s) compensate the fitness cost 
imposed by K76T and may explain the reason why chlo-
roquine susceptibility is not returning at the same rate 
in Africa. It could be also possible to conjecture that, in 
Africa, there are some particular K76-harbouring para-
sites which have some stronger fitness advantage than 
K76-harbouring parasites in Papua New Guinea.

It has been suggested that amino acid differences flank-
ing K76T affect the fitness disadvantage imposed by 
K76T [42]. In the natural parasite population, there are 
two major mutant haplotypes constructed by five amino 
acids at positions 72–76: CVIET and SVMNT [42, 44]. 
In Papua New Guinea, nearly all mutant parasites har-
boured a SVMNT haplotype, and the CVIET haplotype 
was also observed with extremely low prevalence [45, 46]. 
A transfection study has reported that a SVMNT intro-
duced isolate depicted lower growth rates than a wild-
type (CVMNK) isolate, but better growth rate than the 
CVIET introduced isolate [42]. A quick repopulation 
of K76-harbouring parasites after chloroquine discon-
tinuance has mostly been observed in the CVIET hap-
lotype regions. Therefore, the fact that all pfcrt mutants 

harboured a SVMNT haplotype may partly explain the 
persistent high prevalence of K76T in this study region.

However, it is striking that K76-harbouring parasites 
significantly increased during 2016–2018. This is the 
first study to show the potential repopulation of K76 
harbouring parasites after chloroquine withdrawal in a 
SVMNT prevalent region. Despite a significant increase, 
the majority of parasites still harboured the K76T allele. 
Many environmental, population genetic, and parasito-
logical factors potentially affect the rate of repopulation 
of susceptible parasites after chloroquine discontinu-
ance [5, 47, 48]. The frequency of susceptible parasites 
in the parasite population when chloroquine pressure 
was removed is one such important factor. Historically, 
the K76T allele had already become predominant or was 
nearly fixed by the late 1990s in many endemic regions 
in Papua New Guinea [45, 49–51]. Accordingly, the K76T 
prevalence in our study region reached around 95% dur-
ing 2002–2003 [24]. Considering the strong selection 
pressure posed by the use of chloroquine for the treat-
ment of uncomplicated malaria before 2010, an extremely 
low frequency of susceptible parasites is expected at the 
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time when chloroquine was withdrawn. Therefore, it is 
considered that the observed high proportion of K76T 
harbouring parasites may be partly explained by the pre-
sumed extremely low initial proportion of K76-harbour-
ing parasites.

A requirement for secondary determinants has been 
suggested for the augmentation of chloroquine resist-
ance [52–54]. One such candidate gene is pfmdr1 [35, 
53]. In the present study, parasites with Y184F muta-
tion displayed a significantly higher  IC50 for chloroquine 
compared to those with Y184. This association was also 
found in parasites bearing pfcrt-K76T, suggesting that 
Y184F confers an additional factor for decreased chloro-
quine susceptibility in our study area. However, a previ-
ous reverse genetic study reported that an allele change 
from Y184 to Y184F conferred only a slight decrease in 
chloroquine susceptibility in a laboratory clone harbour-
ing pfcrt-SVMNT [55]. One possible explanation for this 
discrepancy is that genetic background could influence 
the role of the Y184F mutation on the augmentation of 
chloroquine resistance. The parasite clone used in the 
study by Veiga et al., was a KC5 clone, a progeny of the 
genetic cross between 7G8 (Brazil) and GB4 (Ghana) par-
asites [56].

Persistence of chloroquine-selecting pressure poten-
tially interferes the recovery of chloroquine-sensitive 
parasites. In Lagos, Nigeria where chloroquine was still 
widely used even after the introduction of ACT, P. falci-
parum parasites harbouring a K76T mutation continued 
to be highly prevalent [57]. In Papua New Guinea, how-
ever, ACT has been used as a first-line treatment for all 
malaria species including P. vivax. Chloroquine has not 
been included in the official malaria-treatment regimen. 
However, although no stock of chloroquine in clinics 
and hospitals was confirmed in the studied area, chlo-
roquine was still sold at two private pharmacies with a 
cheaper price than other anti-malarial drugs throughout 
the study period. Indeed, 2–4% of enrolled patients used 
chloroquine before visiting the clinics in this study. These 
observations indicate that chloroquine is still in use by 
some patients, which could play some role in a result of 
lack of complete withdrawal of chloroquine.

For lumefantrine, our average  IC50 values (4.6 nM) were 
higher than those (1.5 nM) reported in Madang district 
during 2011–2013 [23]. The N86 allele frequencies in our 
study (59–74%) were also much higher than those in the 
Madang study (< 10%). In our study, a significant associa-
tion was detected between higher  IC50 values for lume-
fantrine and the N86 allele in pfmdr1. This is consistent 
with the previous transfection study in which an allelic 
change from N86Y to N86 resulted in a three to four-
fold increase in the  IC50 for lumefantrine [55]. A recent 
meta-analysis has also shown that patients infected with 

parasites harbouring N86 had a fivefold risk of recrudes-
cence in following artemether/lumefantrine treatment 
compared to those infected with parasites harbouring 
N86Y [58]. The observed lower lumefantrine susceptibil-
ity and higher pfmdr1-N86 prevalence than that in the 
previous observation [23] may raise the possibility of a 
decreasing trend of lumefantrine susceptibility in Papua 
New Guinea.

Conclusions
The present analysis provides molecular and ex  vivo 
evidence for the absence of significant recovery of chlo-
roquine susceptibility after 8 years of chloroquine with-
drawal. On the other hand, this study also exhibits a 
significant increase in parasites harbouring K76 dur-
ing the study period, albeit still in a small portion of the 
parasite population. It is well recognized that at the early 
phase when more fit strains are in a small portion, sto-
chastic reasons rather than selective advantages play an 
important role in the increase of these strains [59]. Once 
these strains reach a sufficiently large population, selec-
tive advantage considerably affects the expansion of these 
more fit strains [59]. As such, current study hints at a 
reversal of chloroquine susceptibility in the future and 
warrants further continuous molecular epidemiological 
and phenotypic assessment of natural parasites in Papua 
New Guinea.
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