1 Title: Impact of inadequate initial antimicrobial therapy on mortality in patients with bacteraemic

- 2 cholangitis: A retrospective cohort study
- 3
- 4 Authors: Yasuaki Tagashira^{1,2}, Naoya Sakamoto³, Toshiaki Isogai⁴, Mayu Hikone³, Atsushi

5 Kosaka³, Ran Chino¹, Masanori Higuchi¹, Yuki Uehara², Hitoshi Honda¹

- 6
- 7 Affiliation:

8 1. Division of Infectious Diseases, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan

9 2. Department of Infection Control Science, Juntendo University Graduate School of Medicine,

- 10 Tokyo, Japan
- 11 3. Department of Infectious Diseases, Tokyo Metropolitan Bokutoh General Hospital, Tokyo Japan
- 12 4. Department of Cardiology, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan.
- 13 Keywords: bacteraemic cholangitis, inadequate antimicrobial therapy, treatment, outcome, mortality
- 14 A running title: Inadequate antimicrobial therapy and mortality in bacteraemic cholangitis
- 15 Word count abstract: 200

- 16 Manuscript body: 2377
- 17 Number of figures: 1, Number of tables: 3
- 18 Corresponding author:
- 19 Dr. Hitoshi Honda,
- 20 Division of Infectious Diseases, Tokyo Metropolitan Tama Medical Center,
- 21 Tokyo, Japan
- 22 2-8-29, Musashidai, Fuchu, Tokyo, 183-8524, Japan.
- 23 Email: hondah@hotmail.com
- 24 Tel: 81-42-323-5111
- 25 Fax: 81-42-323-9209
- 26

27

28

29

30

31

33 Abstract

34	Objectives: Acute cholangitis is a common cause of bacteraemia resulting in severe sepsis or septic
35	shock. The impact of the appropriate initial antimicrobial therapy on short-term mortality in
36	bacteraemic cholangitis has not been well investigated.
37	Methods: We conducted a retrospective cohort study of patients with bacteraemic cholangitis at two
38	large tertiary care centres in Tokyo, Japan between 2009 and 2015. We determined the factors
39	associated with 30-day all-cause mortality from the date of drawing the first positive blood culture,
40	using a multivariate logistic regression analysis.
41	Results: We identified 573 patients with bacteraemic cholangitis (median age, 77 years; male,
42	58.3%). The 30-day all cause mortality rate was 6.6% (38/573). Inadequate initial antimicrobial
43	therapy occurred in 133 (23.2%) patients. Factors associated with 30-day all cause mortality included
44	the Charlson comorbidity index score >3 (adjusted odds ratio ([aOR], 4.12; 95% confidence interval
45	[CI], 1.18-14.38), jaundice (total bilirubin > 2.5mg/dl) (aOR, 3.39; 95% CI, 1.46-7.89), septic shock
46	within 48 hours of the first positive blood culture (aOR, 3.34; 95% CI, 1.42-7.89), biliary obstruction
47	due to hepatobiliary malignancy (aOR, 8.00; 95% CI, 2.92-21.97), and inadequate initial
48	antimicrobial therapy (aOR, 2.78; 95% CI, 1.27-6.11).

- 49 Conclusions: Inadequate initial antimicrobial therapy was an important, modifiable determinant of
- 50 survival.
- 51

52 Introduction

53 Acute cholangitis in the context of an obstructed biliary tree results from a wide spectrum of 54 bacterial pathogens, and commonly results in bacteraemia. The proportion of cholangitis cases 55 leading to bacteraemia reportedly ranges from 20 to 71 % [1-4]. Acute cholangitis requires a 56 combination of medical and surgical therapy, including adequate antimicrobial therapy and biliary 57 decompression according to disease severity [5]. Within the past two decades, mortality among 58 patients with acute cholangitis has fallen to the range of $2.7 \sim 10$ %, presumably due to advances in 59 broad-spectrum antimicrobial therapy and improved access to emergency biliary decompression [6]. 60 Bloodstream infection in cholangitis is a major cause of mortality [1, 7, 8]. The proper choice of 61 antimicrobial agents has been shown to lead to a favourable outcome including a decrease in 62 mortality in critically ill patients with bacteraemia or other serious infections [9]. Conversely, 63 inadequate initial antimicrobial therapy was associated with an increased risk of overall mortality 64 due to severe sepsis and septic shock [10-13]. The pathogens in cholangitis are frequently 65 polymicrobial and include enterobacteriaceae (i.e., Escherichia coli, Klebsiella species [spp.], 66 Enterobacter species), anaerobes, Enterococcus spp., and less commonly, Streptococcus spp. and 67 Pseudomonas spp. [14]. Furthermore, an increase in the incidence of cholangitis due to highly drug-68 resistant organisms (e.g., drug-resistant Enterobacteriaceae) has become a great concern worldwide

69	[15]. Given the lack of adequate studies describing the impact of proper empirical antimicrobial
70	therapy on outcomes in bacteraemic cholangitis, we aimed to investigate the association between
71	treatment strategies and clinical outcomes at two large tertiary care centres in the Tokyo
72	metropolitan area in Japan.

74 Materials and Methods

75 Study setting

76 The present report comprises a retrospective observational cohort study of adult patients with 77 bacteraemic cholangitis conducted at two tertiary care hospitals (Tokyo Metropolitan Tama Medical 78 Center and Tokyo Metropolitan Bokutoh General Hospital) from January 2009 to December 2015. 79 Tokyo Metropolitan Tama Medical Center is a 790-bed tertiary care centre with 29 subspecialties, 80 and Tokyo Metropolitan Bokutoh General Hospital is a 765-bed tertiary care centre with 39 81 subspecialties. Both medical centres each have a division of GI (Gastroenterology) and ID 82 (Infectious Diseases), respectively. Obtaining blood cultures prior to initiating parenteral 83 antimicrobials was a standard practice at the participating hospitals. ERCP was performed at the 84 discretion of the attending gastroenterologist if biliary decompression was indicated. The 85 institutional review board at Tokyo Metropolitan Tama Medical Center and Tokyo Metropolitan 86 Bokutoh General Hospital approved this project and the patient's consent was waived because this 87 study would not have influenced current management of participating patients (being a retrospective 88 cohort study).

90 Patient selection

91 We included all patients with bacteraemic cholangitis defined in accordance with the criteria for 92 cholangitis in the Tokyo Guidelines and based on a positive blood culture at the time of diagnosis of 93 acute cholangitis [16]. We enrolled patients starting in January 2009 because the electronic medical 94 record was retrievable starting in that year. We initially identified eligible patients as those whose 95 condition fit the ICD-10 code for "cholangitis" and who had a positive blood culture. We then 96 screened patients by reviewing their electronic medical records and identified cholangitis patients 97 who met the diagnostic criteria of the Tokyo Guidelines for definite or suspected acute cholangitis 98 [16]. If an uncommon pathogen was suspected of causing the cholangitis, we reviewed electronic 99 medical records to determine if the patient had bacteraemic cholangitis. For patients with multiple 100 episodes of bacteraemic cholangitis, only the first episode was included in the study. 101 We excluded the following conditions: 1) patients aged <18 years old; 2) the presence of bacteraemic 102 cholangitis following ERCP or percutaneous transhepatic cholangiodrainage, 3) the presence of 103 bacteraemic cholangitis due to *Candida spp*, 4) death within 24 hours of blood culture obtained, 5) 104 absence of follow-up data on 30-day mortality, and 6) the presence of bacteraemia likely due to other 105 infections (e.g., urinary tract infection).

107 Variables of interest and data collection

108	Thirty-day all-cause mortality, tracked from the day when a positive blood culture was drawn, was
109	used to assess the impact of inadequate initial antimicrobial therapy on the mortality of patients with
110	bacteraemic cholangitis. Electronic medical charts were reviewed for this purpose, and if mortality
111	data were unavailable from the electronic medical records, the (family of) patients who had no
112	readmission data after Day 30 following the obtainment of a positive blood culture, were contacted
113	by telephone to determine whether the patient was alive at Day 30. The demographic characteristics
114	and the clinical and microbiological data of patients who met the inclusion criteria were obtained
115	from the electronic medical records. Severity according to the Tokyo Guidelines, the Charlson
116	comorbidity index, and the Pitt bacteremia score were computed for each patient [16, 17, 18].
117	Definition
118	True bacteraemia was identified based on the presence of a causative organism (Gram-negative
119	bacilli, anaerobes, or Gram-positive cocci) in at least 1 set of blood cultures. For normal skin flora
120	and other potential pathogens (i.e., coagulase-negative staphylococci or Corynebacterium,
121	Propionibacterium, or Bacillus species), two sets of positive blood cultures obtained at separate sites
122	were required for diagnosis of true bacteraemia [19]. Polymicrobial bacteraemia was defined as the
123	presence of two or more species of microorganisms in the same blood culture or the growth of

124	different species in two or more separate blood cultures grown from the same sampling. Bacteraemia
125	was also categorized based on onset, as previously described [20]. Septic shock was defined as
126	bacteraemia evoking systemic inflammatory response syndrome with concomitant evidence of organ
127	hypoperfusion and arterial systolic blood pressure <90 mmHg refractory to fluid resuscitation or the
128	need for vasopressors to maintain blood pressure [21]. The severity of illness and the comorbidity
129	index were measured using the Pitt bacteremia score, the severity assessment criteria of the Tokyo
130	Guidelines, and the Charlson comorbidity index. The Charlson comorbidity index score was
131	categorized as 0-1, 2-3, or >3 [17].
132	Inadequate antimicrobial therapy was defined as either 1) the administration of empiric
133	antimicrobials which were inactive against subsequently isolated organisms or 2) no administration
134	of antimicrobial agents between drawing a blood culture and obtaining a positive culture result [22].
135	In this study, we considered cephamycins (e.g., cefmetazole and cefmandole) to be inadequate
136	antimicrobial choices for the treatment of bacteraemic cholangitis due to the presence of extended-
137	spectrum β -lactamase (ESBLs)-producing enterobacteriaceae; although the antimicrobial
138	susceptibility results showed that these pathogens were susceptible to cephamycin, treatment failure
139	resulting from cephamycin use has frequently been reported [23, 24].

141 Statistical analysis

142 Categorical variables were compared using Fisher's exact test. Continuous variables were compared 143 using the Mann-Whitney U test. All significant variables with P <0.10 in univariate analysis were 144 considered to be candidates for entry into a forward stepwise multivariate logistic regression model. 145 The multivariate logistic regression model for assessing the factors associated with inadequate 146 antimicrobial therapy followed the rule of thumb of 1 covariate per 10 events; however, the ratio of 147 events to independent variable in the final model assessing factors associated with mortality was 1:5, 148 given the lower number of outcome events. Variables were retained in the final model if P<0.05. A 2-149 sided P<0.05 was considered statistically significant. The Spearman's rho test was used to examine 150 collinearity of independent variables. The Hosmer-Lemeshow test was used for goodness of fit for the 151 logistic regression model. All statistical analyses were performed using SPSS version 23 (IBM, 152 Armonk, NY, USA).

Results

155	In total, 1019 episodes were initially screened. Among these, 365 (35.8%) failed to fulfil the
156	definition of bacteraemic cholangitis, and 81 (7.5%) were excluded because they had recurrent
157	episodes of bacteraemic cholangitis during the study period, leaving 573 (56.2%) episodes in the
158	study period for analysis. (Figure 1.) The patient characteristics are summarized in Table 1.
159	Of the 573 patients, 133 (23.2%) had inadequate initial antimicrobial therapy in the interval between
160	drawing the blood culture and the notification of positive blood culture result. Among 133 patients
161	with inadequate antimicrobial therapy, the majority (132/133: 99.2%) had received ineffective initial
162	antimicrobial therapy against the isolated pathogens, and one patient (1/133:0.8%) had received no
163	antimicrobial therapy at the time of diagnosis. Empirical antimicrobial therapy was found to be
164	inadequate in patients with bacteraemic cholangitis due to Gram-negative bacilli (70/133; 52.6%),
165	Enterococcus spp. (40/133; 30.1%), or anaerobes (11/133; 8.3%). No vancomycin-resistant
166	enterococci were identified. In patients with inadequate initial antimicrobial therapy, 83/133 (62.4%)
167	were switched to other antimicrobials or given other additional antimicrobials to provide adequate
168	coverage following identification of the inadequate therapy. In our cohort, the patients with
169	bacteraemic cholangitis due to enterococcal, nosocomial, and polymicrobial infections were

170	significantly more likely to have received inadequate antimicrobial therapy. Factors independently
171	associated with inadequate empirical antimicrobial therapy are shown in Table 2.
172	The prevalence of 30-day all-cause mortality among patients with bacteraeamic cholangitis was
173	6.6% (38/573). In these 38 patients, the median time between the date of the positive blood culture
174	and the date of death was 18 days (range 2-30 days). Predictors of mortality in patients with
175	bacteraemic cholangitis are shown in Table 3. In the multivariate model, factors associated with
176	mortality included the Charlson comorbidity index score >3 (adjusted odds ratio ([aOR], 4.12; 95%
177	confidence interval [CI], 1.18-14.38), jaundice (total bilirubin > 2.5mg/dl) (aOR, 3.39; 95% CI, 1.46-
178	7.89), septic shock within 48 hours of the first positive blood culture (aOR, 3.34; 95% CI, 1.42-
179	7.89), biliary obstruction due to hepatobiliary malignancy (aOR, 8.00; 95% CI, 2.92-21.97), and
180	inadequate initial antimicrobial therapy (aOR, 2.78; 95% CI, 1.27-6.11).

181 **Discussion**

182	This study evaluated the impact of the adequacy of empirical antimicrobial therapy on mortality in
183	bacteraemic cholangitis at two Japanese tertiary care centres, and demonstrated that inadequate
184	empirical antimicrobial therapy was independently associated with 30-day mortality in patients with
185	bacteraemic cholangitis even after adjusting for preexisting co-morbidities and the severity of illness.
186	The findings were consistent with those of previous studies demonstrating that inappropriate initial
187	antimicrobial therapy increased the odds of mortality in patients with bacteraemic biliary tract
188	infection approximately two-fold [25, 26]. However, these previous studies considered various types
189	of biliary infection including cholecystitis. Moreover, the impact of inadequate antimicrobial therapy
190	on the outcome was assessed without adjusting for the effect of biliary decompression, or based on
191	the relatively lower performance rate of biliary decompression in the respective studies. In contrast,
192	the present study focused exclusively on bacteraemic cholangitis and assessed the impact of
193	inadequate initial antimicrobial therapy on mortality under circumstances in which ERCP was
194	promptly available.
195	In the current study, inadequate initial antimicrobial therapy was a single modifiable factor

196 independently associated with increasing mortality among patients with bacteraemic cholangitis.

197 This finding demonstrates the importance of initial antimicrobial choice in the management of198 bacteraemic cholangitis.

199	As seen in the Table 1, a considerable proportion of patients received cephalosporins as an initial
200	antimicrobial therapy in the study population. Where enterococcal bacteraemic cholangitis was
201	concerned, inadequate antimicrobial therapy was specifically due to cephalosporin administration.
202	Additionally, because cefmetazole, 3 rd generation cephalosporins, and ampicillin/sulbactam, which
203	were not active against drug-resistant Gram-negative bacilli, were commonly used as the initial
204	antimicrobial therapy even in nosocomial settings, this might have resulted in inadequate
205	antimicrobial therapy in the nosocomial bacteraemic cholangitis as well. It is noteworthy that in our
206	study, patients with nosocomial bacteraemic cholangitis tended to have a higher Charlson
207	comorbidity index (Appendix 1), and that a trend towards inadequate antimicrobial therapy in
208	patients with a higher Charlson comorbidity index was evident although this variable was not
209	retained in the final model (Table 2). Although frequent use of broad spectrum antimicrobial agents
210	may be able to minimize the occurrence of inadequate antimicrobial therapy, their unnecessary use
211	may counteract the effects of antimicrobial stewardship. Assessing the involvement of organisms
212	potentially contributing to inadequate antimicrobial therapy after risk stratification is imperative for
213	choosing the most appropriate empirical antimicrobial therapy. More importantly, treating physicians

should have a high level of suspicion for pathogens that are not routinely covered by empirical

216	We also found that some non-modifiable patient-related factors including septic shock within 48 hours
217	of the first positive blood culture and biliary obstruction due to hepatobiliary malignancy were
218	independent predictors of mortality. Our findings were consistent with those of other reports showing
219	that significant underlying comorbidities and severity of illness at the time of presentation were also
220	independent predictors of mortality in cases of bacteraemic cholangitis [25, 26].
221	In this study, although a large number of patients underwent ERCP within 1 calendar day of
222	obtaining a positive blood culture, ERCP did not confer any benefit in terms of reduced mortality
223	rate in the final model despite being a statistically significant variable in univariate analysis. Previous
224	studies revealed variable associations between ERCP and mortality. Whereas ERCP contributed to a
225	reduction in mortality in patients with cholangitis, and delayed ERCP was associated with in-hospital
226	mortality and organ failure in patients with acute cholangitis [3, 27, 28], up to 50.0 % of patients
227	with cholangitis responded to antimicrobial therapy alone in another study [26]. In the present study,
228	the benefits of ERCP in cholangitis may have been underestimated because of the smaller numbers
229	of events (i.e., deaths), differences in disease severity, and the impact of other, unmeasured factors
230	associated with decreased mortality, such as advances in medical practice other than biliary

231	decompression. ERCP is considered to be one of the most important treatment strategies from
232	various perspectives including biliary decompression, stone removal, and achieving biliary tract
233	patency via drainage or stents.
234	Our study has several important limitations. As with any other observational study, even after
235	adjusting for known predisposing factors, other unmeasured factors may have contributed to patient
236	mortality. Although this study included a large population, the subjects were all derived from just
237	two urban tertiary care centres in Japan such that the results may not be generalizable to other
238	hospitals. Although the majority of patients underwent ERCP within one calendar day of obtaining a
239	positive blood culture, the impact of the interval from presentation to the initiation of ERCP on the
240	outcome was not assessed.
241	
242	Conclusion
243	The current study demonstrated that inadequate initial antimicrobial therapy negatively impacted
244	mortality in bacteraemic cholangitis patients. Inadequate antimicrobial therapy frequently occurred
245	in bacteraemic cholangitis cases due to Enterococcus spp., and polymicrobial organisms as well as
246	nosocomial cases. Given the circumstances associated with the spectrum of causative pathogens and

247	the prevalence of drug-resistant organisms, an appropriate, initial antimicrobial choice against
248	bacteraemic cholangitis, complemented by rigorous antimicrobial stewardship is extremely
249	important to improve clinical outcomes while avoiding the overuse of antimicrobial agents.
250	
251	Transparency declaration
252	All authors declare no conflicts of interest.
253	Authors' contributions
254	YT, and HH designed the study protocol. YT, NS, AK, RC, and MH collected the patient data. YT, TI,
255	and HH performed the data analysis. YT drafted the first version of the manuscript. YU performed the
256	critical review. HH and YU revised the manuscript, and all the authors contributed to the final version
257	of manuscript.
258	Funding source
259	No funding source provided.
260	Financial Disclosure
261	The authors have no financial relationships relevant to this article to disclose.
262	Transparency Declaration

200 The other dations have no commete of interest to discros	263	The other authors	have no conflicts	of interest to	disclos
--	-----	-------------------	-------------------	----------------	---------

264			
265			
266			
267			
268			
269			
270			
271			
272			
273			
274			
275			
276			

277 References

- [1] Sinanan MN. Acute cholangitis. Infect Dis Clin North Am. 1992;6(3):571-99.
- [2] Hanau LH, Steigbigel NH. Acute (ascending) cholangitis. Infect Dis Clin North Am.
 280 2000;14(3):521-46.
- [3] Khashab MA, Tariq A, Tariq U, Kim K, Ponor L, Lennon AM, et al. Delayed and unsuccessful
- 282 endoscopic retrograde cholangiopancreatography are associated with worse outcomes in patients with
- acute cholangitis. Clin Gastroenterol Hepatol. 2012;10(10):1157-61.
- [4] Weber A, Schneider J, Wagenpfeil S, Winkle P, Riedel J, Wantia N, et al. Spectrum of pathogens
- in acute cholangitis in patients with and without biliary endoprosthesis. J Infect. 2013;67(2):111-21.
- [5] Itoi T, Tsuyuguchi T, Takada T, Strasberg SM, Pitt HA, Kim MH, et al. TG13 indications and
- techniques for biliary drainage in acute cholangitis (with videos). J Hepatobiliary Pancreat Sci.
 2013;20(1):71-80.
- [6] Kimura Y, Takada T, Strasberg SM, Pitt HA, Gouma DJ, Garden OJ, et al. TG13 current
 terminology, etiology, and epidemiology of acute cholangitis and cholecystitis. J Hepatobiliary
 Pancreat Sci. 2013;20(1):8-23.
- 292 [7] Melzer M, Toner R, Lacey S, Bettany E, Rait G. Biliary tract infection and bacteraemia:
- 293 presentation, structural abnormalities, causative organisms and clinical outcomes. Postgrad Med J.

- 294 2007;83(986):773-6.
- [8] Podnos YD, Jimenez JC, Wilson SE. Intra-abdominal Sepsis in Elderly Persons. Clin Infect Dis.
 2002;35(1):62-8.
- [9] Paul M, Shani V, Muchtar E, Kariv G, Robenshtok E, Leibovici L. Systematic review and meta-
- analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents
 Chemother. 2010;54(11):4851-63.
- 300 [10] Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for
- 301 hospitalized patients. Clin Infect Dis. 2000;31 Suppl 4:S131-8.
- 302 [11] Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D. Inappropriate initial antimicrobial
- 303 therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am
- 304 J Med. 2003;115(7):529-35.
- 305 [12] Fraser A, Paul M, Almanasreh N, Tacconelli E, Frank U, Cauda R, et al. Benefit of appropriate
- 306 empirical antibiotic treatment: thirty-day mortality and duration of hospital stay. Am J Med.
- 307 2006;119(11):970-6.
- 308 [13] Zaragoza R, Artero A, Camarena JJ, Sancho S, Gonzalez R, Nogueira JM. The influence of
- 309 inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive
- 310 care unit. Clin Microbiol Infect. 2003;9(5):412-8.

- 311 [14] Maluenda F, Csendes A, Burdiles P, Diaz J. Bacteriological study of choledochal bile in patients
- 312 with common bile duct stones, with or without acute suppurative cholangitis. Hepatogastroenterology.

313 1989;36(3):132-5.

- 314 [15] Watkins RR, Bonomo RA. Overview: Global and Local Impact of Antibiotic Resistance. Infect
- 315 Dis Clin North Am. 2016;30(2):313-22.
- 316 [16] Kiriyama S, Takada T, Strasberg SM, Solomkin JS, Mayumi T, Pitt HA, et al. TG13 guidelines
- 317 for diagnosis and severity grading of acute cholangitis (with videos). J Hepatobiliary Pancreat Sci.
- 318 2013;20(1):24-34.
- 319 [17] Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic
- 320 comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-83.
- 321 [18] Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, et al. International
- 322 prospective study of Klebsiella pneumoniae bacteraemia: implications of extended-spectrum beta-
- 323 lactamase production in nosocomial Infections. Ann Intern Med. 2004;140(1):26-32.
- 324 [19] Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated
- 325 infection and criteria for specific types of infections in the acute care setting. Am J Infect Control.
 326 2008;36(5):309-32.
- 327 [20] Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, et al. Health care--

- 328 associated bloodstream infections in adults: a reason to change the accepted definition of community-
- 329 acquired infections. Ann Intern Med. 2002;137(10):791-7.
- 330 [21] Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis
- and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644-

332 55.

- 333 [22] Marschall J, Agniel D, Fraser VJ, Doherty J, Warren DK. Gram-negative bacteraemia in non-ICU
- 334 patients: factors associated with inadequate antibiotic therapy and impact on outcomes. J Antimicrob
- 335 Chemother. 2008;61(6):1376-83.
- 336 [23] Paterson DL. Recommendation for treatment of severe infections caused by Enterobacteriaceae
- 337 producing extended-spectrum beta-lactamases (ESBLs). Clin Microbiol Infect. 2000;6(9):460-3.
- 338 [24] Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an
- and emerging public-health concern. Lancet Infect Dis. 2008;8(3):159-66.
- 340 [25] Kang CI, Sung YK, Lee KH, Lee KT, Lee JK. Clinical impact of inappropriate initial antimicrobial
- therapy on outcome in bacteremic biliary tract infections. Scand J Infect Dis. 2013;45(3):227-34.
- 342 [26] Sung YK, Lee JK, Lee KH, Lee KT, Kang CI. The clinical epidemiology and outcomes of
- 343 bacteremic biliary tract infections caused by antimicrobial-resistant pathogens. Am J Gastroenterol.
- 344 2012;107(3):473-83.

345	[27] James PD, Kaplan GG, Myers RP, Hubbard J, Shaheen AA, Tinmouth J, et al. Decreasing
346	mortality from acute biliary diseases that require endoscopic retrograde cholangiopancreatography: a
347	nationwide cohort study. Clin Gastroenterol Hepatol. 2014;12(7):1151-9 e6.
348	[28] Lee F, Ohanian E, Rheem J, Laine L, Che K, Kim JJ. Delayed endoscopic retrograde
349	cholangiopancreatography is associated with persistent organ failure in hospitalised patients with acute
350	cholangitis. Aliment Pharmacol Ther. 2015;42(2):212-20.
351	
352	
353	
354	
355	
356	
057	
357	
358	
359	Table and Figure legends

360	Table 1. Baseline characteristics of patients with bacteraemic cholangitis
361	Table 2. Comparison of patients with bacteraemic cholangitis receiving adequate or inadequate initial
362	antimicrobial therapy
363	Table 3. Comparison of clinical characteristics, and outcomes between 30-day survivors and
364	nonsurvivors
365	Figure 1. Description of the study population
366	
367	
368	
369	
370	
371	
372	
373	

Table1. Baseline characteristics of patients with bacteraemic cholangitis

Characteristic	Total (n=573)
Demographics	
Age, year, median (range)	77 (26-97)
Male gender	334 (58.3)
Asian	573 (100)
Co-morbidities/past medical history	
History of smoking	208 (36.3)
History of alcohol use	188 (32.8)
History of malignancies	231 (40.3)
Diabetes mellitus	135 (23.6)
Congestive heart failure	49 (8.6)
Peripheral vascular disease	17 (3.0)
Cerebrovascular disease	63 (11.0)
Chronic pulmonary disease	34 (5.9)
Peptic ulcer disease	47 (8.2)
Chronic liver disease	91 (15.9)
Chronic kidney disease	18 (3.1)
Connective tissue disease	20 (3.5)
Systemic steroid use (\geq 5 mg) in the last 28 days	17 (3.0)
Chemotherapeutic agent use in the last 28 days	60 (10.5)
Charlson comorbidity index, median (IQR)	2 (1-4)
Score 0-1	218 (38.0)
Score 2-3	186 (32.5)
Score >3	169 (29.5)

Characteristics at presentation	
Jaundice (total bilirubin > 2.5mg/dl)	296 (51.7)
Septic shock within 48 hours after the first positive blood culture	111 (19.4)
Classification of bacteraemia ^a	
Community-acquired	214 (37.3)
Healthcare-associated	269 (46.9)
Nosocomial	90 (15.7)
Severity of cholangitis (Tokyo Guidelines)	
Grade I	178 (31.1)
Grade II	150 (26.2)
Grade III	245 (42.8)
Causes of biliary obstruction	
Choledocholithiasis	326 (56.9)
Biliary obstruction due to hepatobiliary malignancy	148 (25.8)
Benign biliary stricture	99 (17.3)
ERCP for biliary decompression at bacteraemic cholangitis diagnosis	444 (77.5)
Time to ERCP, median, days (range)	0 (0-10)
Causative pathogen	
Monomicrobial bacteraemia	457 (79.8)
Enterobacteriaceae	378 (66.0)
Other Gram-negative bacilli	15 (2.6)
Enterococcus spp.	18 (3.1)
Anaerobes	24 (4.2)
Other pathogens	22 (3.8)

Polymicrobial bacteraemia ^b	116 (20.2)
Two organisms	91 (15.9)
More than three organisms	25 (4.4)
Resistant pathogens	
3 rd generation cephalosporin-resistant enterobacteriaceae	34 (5.9)
Extended-spectrum β -lactamase-producing enterobacteriaceae	15 (2.6)
Carbapenem-resistant enterobacteriaceae	0 (0)
Vancomycin-resistant enterococci	0 (0)
Initial antimicrobial choice	
Cephalosporin / beta-lactamase inhibitor	210 (36.6)
Penicillins / beta-lactamase inhibitor	176 (30.7)
Cephalosporin	124 (21.6)
Carbapenem	31 (5.4)
Any single agent other than cephalosporin or carbapenem	7 (1.2)
Cephalosporin with metronidazole	3 (0.5)
Any combination therapy other than cephalosporin with metronidazole ^c	22 (3.8)
Treatment outcome	
Pitt bacteraemia score, median (IQR)	1 (0-2)
Inadequate initial empirical antimicrobial therapy ^d	133 (23.2)
Due to Gram-negative bacilli	70 (52.6)
Due to Enterococcus spp.	40 (30.1)
Due to anaerobes	11 (8.3)
Duration of antimicrobial therapy, median, day (range)	12 (1-108)
Length of hospital stay from the onset of cholangitis, median, day (range)	15 (2-154)

Died within 30 days

- 375 Data are presented as number (%) unless otherwise specified.
- 376 Abbreviations: ERCP, endoscopic retrograde cholangiopancreatography; T-bil, total serum bilirubin377 level
- 378 ^{a, b, d} See methods for definition
- ^c Includes carbapenem and other antimicrobials (n=5), cephalosporin and beta-lactam / beta-lactamase inhibitors (n=4), two different penicillins / beta-lactamase inhibitors (n=3), and two different cephalosporins (n=3).
- 382
- 383
- 384

Characteristic	Adequate initial antimicrobial therapy	Inadequate Initial antimicrobial therapy	Р	Adjusted OR	Р
	(n=440)	(n=133)		(95% CI)	
Demographics					
Age, years					
\leq 50	8 (1.8)	6 (4.5)	Ref.	Ref	
51-65	51 (11.6)	27 (20.3)	0.56		
66-80	227 (51.6)	62 (46.6)	0.07		
≥ 81	154 (35.0)	38 (28.6)	0.05	0.29 (0.09-0.97)	0.05
Male gender	257 (58.4)	77 (57.9)	0.92		
Co-morbidities/past medical history					
History of smoking	153 (34.8)	55 (41.4)	0.18		
History of alcohol use	142 (32.3)	46 (34.6)	0.67		
History of malignancies*	167 (38.0)	64 (48.1)	0.04		
Diabetes mellitus	107 (24.3)	28 (21.1)	0.49		
Congestive heart failure	35 (8.0)	14 (10.5)	0.38		

Table2. Comparison of patients with bacteraemic cholangitis receiving adequate or inadequate initial antimicrobial therapy

Peripheral vascular disease	12 (2.7)	5 (3.8)	0.56
Cerebrovascular disease	43 (9.8)	20 (15.0)	0.11
Chronic pulmonary disease	27 (6.1)	7 (5.3)	0.84
Peptic ulcer disease	38 (8.6)	9 (6.8)	0.59
Chronic liver disease	67 (15.2)	24 (18.0)	0.42
Chronic kidney disease	12 (2.7)	6 (4.5)	0.39
Connective tissue disease	14 (3.2)	6 (4.5)	0.43
Systemic steroid use ($\geq 5 \text{ mg}$) in the last 28 days	12 (2.7)	5 (3.8)	0.56
Chemotherapeutic agent use in the last 28 days	48 (10.9)	12 (9.0)	0.63
Charlson comorbidity index			
Score 0-1	180 (40.9)	38 (28.6)	Ref.
Score 2-3	141 (32.1)	45 (33.8)	0.10
Score >3	119 (27.0)	50 (37.6)	0.005
Characteristics at presentation			
Jaundice (T-bil > 2.5 mg/dl)	234 (53.2)	62 (46.6)	0.20
Septic shock within 48 hours after the first positive blood culture	85 (19.3)	26 (19.5)	1.00

Classification of bacteraemia ^a

Community-acquired	177 (40.2)	37 (27.8)	Ref.		
Healthcare-associated	210 (47.7)	59 (44.4)	0.21		
Nosocomial	53 (12.0)	37 (27.8)	< 0.001	3.57 (1.93-6.61)	< 0.001
Severity of cholangitis (Tokyo Guidelines)					
Grade I	134 (30.5)	44 (33.1)	Ref.		
Grade II	119 (27.0)	31 (23.3)	0.38		
Grade III	187 (42.5)	58 (43.6)	0.80		
Causes of biliary obstruction					
Choledocholithiasis	267 (60.7)	59 (44.4)	Ref.		
Biliary obstruction due to hepatobiliary malignancy	101 (23.0)	47 (35.3)	0.001		
Benign biliary stricture	72 (16.4)	27 (20.3)	0.05		
Bacteraemia					
Polymicrobial bacteraemia ^b	63 (14.3)	53 (39.8)	< 0.001	1.94 (1.10-3.43)	0.02
Pathogens					
Enterobacteriaceae	348 (79.1)	54 (40.6)	Ref.		

Enterococcus spp. ^c	24 (5.5)	40 (30.1)	< 0.001	8.19(4.08-16.45)	< 0.001
Others	68 (15.5)	39 (29.3)	< 0.001	3.15(1.84-5.41)	< 0.001

Data are presented as number (%) unless otherwise specified.

Abbreviations: ERCP, Endoscopic retrograde cholangiopancreatography; T-bil, total serum bilirubin level; N/A, not applicable

^{a,b} See methods for definition

^{c.} Includes both monomicrobial and polymicrobial bacteraemic cholangitis (18 episodes were of monomicrobial enterococcal bacteraemic cholangitis and 46 episodes were of polymicrobial enterococcal bacteraemic cholangitis).

* The variable, 'history of malignancies' was not included in the final model despite its statistical significance in univariate analysis because this variable showed strong collinearity with the Charlson comorbidity index (rs = 0.62 [P<.001])

Variables considered but not retained in the final model were the Charlson comorbidity index and causes of biliary obstruction.

The Hosmer-Lemeshow goodness of fit χ^2 test was 3.74 (P= 0.81)

Characteristics	Survived > 30 days	$Died \le 30 \text{ days}$	P	Adjusted	P
	(n=534)	(n=38)		OR (95% CI)	
Demographics					
Age					
≤ 50	13 (2.4)	1 (2.6)	Ref.		
51-65	75 (14.0)	3 (7.9)	0.58		
66-80	267 (49.9)	22 (57.9)	0.95		
≥ 81	180 (33.6)	12 (31.6)	0.90		
Male gender	312 (58.3)	22 (57.9)	0.96		
Co-morbidities/past medical history					
History of smoking	196 (36.6)	12 (31.6)	0.60		
History of alcohol use	177 (33.1)	11 (28.9)	0.72		
History of malignancies*	202 (37.8)	29 (76.3)	< 0.001		
Diabetes mellitus	128 (23.9)	7 (18.4)	0.55		
Congestive heart failure	43 (8.0)	6 (15.8)	0.12		
Peripheral vascular disease	17 (3.2)	0			

Table 3. Comparison of clinical characteristics, and outcomes between 30-day survivors and nonsurvivors

Cerebrovascular disease	61 (11.4)	2 (5.3)	0.42		
Chronic pulmonary disease	34 (6.4)	0			
Peptic ulcer disease	44 (8.2)	3 (7.9)	1.00		
Chronic liver disease	82 (15.3)	9 (23.7)	0.17		
Chronic kidney disease	16 (3.0)	2 (5.3)	0.34		
Connective tissue disease	19 (3.6)	1 (2.6)	1.00		
Systemic steroid use (\geq 5 mg) in the last 28 days	17 (3.2)	0	NA		
Chemotherapeutic agent use in the last 28 days	51 (9.5)	9 (23.7)	0.01		
Charlson comorbidity index					
Score 0-1	214 (40.0)	4 (10.5)	Ref.		
Score 2-3	179 (33.5)	7 (18.4)	0.25		
Score >3	142 (26.5)	27 (71.1)	< 0.001	4.12(1.18-14.38)	0.03
Characteristics at presentation					
Jaundice (T-bil > 2.5 mg/dl)	269 (50.3)	27 (71.1)	0.02	3.39 (1.46-7.89)	0.005
Septic shock within 48 hours after the first positive blood culture	95 (17.8)	16 (42.1)	0.001	3.34 (1.42-7.89)	0.006

Classification of bacteraemia ^a

Community-acquired	210 (39.3)	4 (10.5)	Ref.		
Healthcare-associated	249 (46.5)	20 (52.6)	0.01		
Nosocomial	76 (14.2)	14 (36.8)	< 0.001		
Severity of cholangitis (Tokyo Guidelines)					
Grade I	171 (32.0)	7 (18.4)	Ref.		
Grade II	145 (27.1)	5 (13.2)	0.77		
Grade III	219 (40.9)	26 (68.4)	0.02		
Causes of biliary obstruction					
Choledocholithiasis	318 (59.94)	8 (21.1)	Ref.	Ref.	
Biliary obstruction due to hepatobiliary malignancy	121 (22.6)	27 (71.1)	< 0.001	8.00 (2.92-21.97)	< 0.001
Benign biliary stricture	96 (17.9)	3 (7.9)	0.75		
ERCP for biliary decompression at bacteraemic	423 (79.1)	21 (55.3)	0.002		
cholangitis diagnosis					
enoralizatio diagnosio					
Time to ERCP, days (range)	0 (0-10)	0 (0-4)	0.62		
Time to ERCP, days (range) Bacteraemia	0 (0-10)	0 (0-4)	0.62		
Time to ERCP, days (range) Bacteraemia Enterococcus bacteraemia ^b	0 (0-10) 57 (10.7)	0 (0-4) 7 (18.4)	0.62 0.18		

Treatment outcome

Pitt bacteraemia score, median (IQR)	1 (0-2)	1 (0.75-3)	0.11		
Inadequate initial antimicrobial therapy ^d	116 (21.7)	17 (44.7)	0.002	2.78 (1.27-6.11)	0.01
Duration of antimicrobial use, days (range)	12 (1-108)	12.5 (2-30)	0.71		

Data are presented as number (%) unless otherwise specified.

Abbreviations: OR, odds ratio; ERCP, Endoscopic retrograde cholangiopancreatography; T-bil, total serum bilirubin level; N/A, not applicable ^{a-d} See methods for definition.

* The variable, 'history of malignancies' was not included in the final model despite its statistical significance in univariate analysis because this variable had a strong collinearity with the Charlson comorbidity index (rs = 0.62 [P < .001])

Variables considered but not retained in the final model were chemotherapeutic agent use in the last 28 days, classification of bacteraemia, severity of cholangitis (Tokyo Guidelines) and ERCP for biliary decompression at bacteraemic cholangitis diagnosis.

The Hosmer-Lemeshow goodness of fit χ^2 test was 3.60 (P= 0.89)

Figure 1. Description of the study population

Appendix

Title: Impact of inadequate initial antimicrobial therapy on mortality in patients with bacteraemic cholangitis: A retrospective cohort study

Authors: Yasuaki Tagashira ^{1,2}, Naoya Sakamoto ³, Toshiaki Isogai ⁴, Mayu Hikone ³, Atsushi Kosaka ³, Ran Chino ¹, Masanori Higuchi ¹, Yuki Uehara ², Hitoshi Honda ¹

Appendix 1.

Supplementary tables for 1) proportion of Charlson comorbidity index in classification of bacteraemia and 2) proportion of Charlson comorbidity index in adequate/inadequate initial antimicrobial therapy

		Classification of bacteraemia		
		Community	Healthcare-associated	Nosocomial
Charlson	0-1	121 (56.5)	82 (30.5)	15 (16.7)
comorbidity	2-3	64 (29.9)	96 (35.7)	26 (28.9)
index	>3	29 (13.6)	91 (33.8)	49 (54.4)

Adequate initial	Inadequate initial
antimicrobial therapy	antimicrobial therapy
(n=53)	(n=37)

Charlson	0-1	10 (18.9)	5 (13.5)
comorbidity	2-3	14 (26.4)	12 (32.4)
index	>3	29 (54.7)	20 (54.1)