1 Category [Original ar	ticl	e	
-------------------------	------	---	--

Title: Clinicopathological characteristics associated with necrosis in pulmonary
 metastases from colorectal cancer

5

6 Authors:

7 Jun Suzuki^{1,2,5}, Motohiro Kojima¹, Keiju Aokage², Takashi Sakai^{1,2}, Hiroshi Nakamura^{1,5},

8 Yuuki Ohara^{1,3}, Kenta Tane², Tomohiro Miyoshi², Masato Sugano³, Satoshi Fujii¹,

- 9 Takeshi Kuwata³, Atsushi Ochiai⁶, Masaaki Ito⁴, Kenji Suzuki⁵, Masahiro Tsuboi²,
- 10 Genichiro Ishii¹
- 11
- 12 Affiliates
- 13 1. Division of Pathology, Exploratory Oncology Research & Clinical Trial Center,
- 14 National Cancer Center, Chiba, Japan
- 15 2. Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba, Japan

16 3. Department of Pathology and Clinical Laboratories, National Cancer Center Hospital

17 East, Chiba, Japan

18 4. Department of Colorectal Surgery, National Cancer Center Hospital East, Chiba,19 Kashiwa

- 20 5. Department of General Thoracic Surgery, Juntendo University School of Medicine,
- 21 Tokyo, Japan
- 22 6. Exploratory Oncology Research & Clinical Trial Center, National Cancer Center,
- 23 Chiba, Japan
- 24
- 25 Disclosure of funding: None
- 26 Financial Support and industry affiliations: None
- 27 Acknowledgment: None
- 28
- 29 Corresponding author contact information:
- 30 Corresponding Author. Genichiro Ishii
- 31 Chief of Division of Pathology, Exploratory Oncology Research & Clinical Trial Center,
- 32 National Cancer Center 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan Phone:
- 33 +81-4-7134-6855

- 34 Fax: +81-4-7134-6865
- 35 E-mail: gishii@east.ncc.go.jp
- 36
- 37 Text word count: 1945 (Excluding abstract and references)
- 38 Abstract word count: 244
- 39 No. of figures: 4
- 40 No. of tables: 1
- 41 No. of supplementary figures: 4
- 42 No. of supplementary tables: 3

43 ABSTRACT

44 Purpose: Metastatic lung cancers from the colon and rectum (MLCR) frequently have 45 necrotic components. The aim of this study is to elucidate clinicopathological factors 46 associated with the amount of necrosis in MLCR. 47 **Methods**: Ninety patients who underwent the first pulmonary metastasectomy for MLCR 48 with a tumor diameter ≤ 3.0 cm and without chemotherapy were enrolled in this study. 49 Analyzing digitally scanned pathological slides, we calculated the necrosis percentage 50 (NP: the necrosis area divided by the tumor area). The relationship between NP and 51 clinicopathological factors was analyzed. Moreover, to determine whether NP was 52 affected by tissue hypoxia, vascularization, or tumor cell proliferation, tissues were 53 analyzed by immunohistochemical staining using carbonic anhydrase IX (CAIX), CD34 54 antibodies, and Ki-67 antibodies, respectively. 55 **Results**: Median tumor area and NP were 0.69 cm² (0.11-3.01) and 13.1% (0-71.6), 56 respectively. Although NP was not associated with the tumor area, it was significantly 57 higher in the patients with a positive smoking history (8.14% vs 17.1%, p = 0.045). Other

58 clinicopathological factors were not correlated with NP. Immunohistochemical analysis

59	revealed that CA IX expression on tumor cells, CD34 micro-vessel density, CD34 micro-
60	vessel area, and Ki-67 index were not significantly associated with NP. NP in the primary
61	site was not associated with NP in the pulmonary metastasis.
62	Conclusions: NP was not determined by tumor size, tissue hypoxia, vascularization, or
63	tumor cell proliferation. Positive correlation of NP with smoking history suggests a
64	unique lung microenvironment in smokers which makes necrosis of MLCR more likely
65	to occur.
66	
67	Keywords: colorectal cancer; pulmonary metastasis; pathology; necrosis
68	
69	
70	
71	
72	
73	
74	

75 Introduction

76 Colorectal cancer is one of the most common cancers and causes of cancer deaths 77 worldwide [1]. The most common extra-abdominal organ site of metastases of colorectal 78 cancer is the lung, involved in 10%–25% of all patients with colorectal cancer [2, 3]. 79 The characteristic pathological findings of metastatic lung cancer from the colon and 80 rectum (MLCR) include glands lined by pseudostratified columnar cells and extensive 81 necrosis with karyorrhectic debris, also known as dirty necrosis [4]. The presence of dirty 82 necrosis in malignant pulmonary tumors suggests a colorectal origin [5]. 83 Generally, tumor necrosis results from chronic hypoxia due to rapid tumor growth. 84 This could be caused by the rapidly proliferating tumor obstructing the focal large vessels 85 or microvasculature [6, 7]. Väyrynen et al. investigated the causes of necrosis in 86 colorectal cancer by examining cell proliferation (Ki-67 index) and neovascularization (microvessel density), both of which were determined to be negative [8]. Otherwise, there 87 88 have been few studies investigating the clinicopathological factors associated with 89 necrosis in colorectal cancer as well as in MLCR. Therefore, it needs to be clarified 90 whether tumor size, tissue hypoxia, neovascularization, or cell proliferation is correlated

91	with the amount of necrosis in MLCR. Hence, this study aims to investigate
92	clinicopathological characteristics that contribute to the amount of necrosis in MLCR.
93	
94	Patients and methods
95	Case selection
96	We investigated a total of 168 pulmonary metastasectomy cases for MLCR with tumor
97	diameters no less than 3.0 cm at our institution between 2013 and 2017. Among them, 52
98	cases were excluded because they were not the first metastasectomy cases. Two cases
99	were excluded because of another advanced active cancer. Furthermore, 24 cases in which
100	chemotherapy had been conducted for MLCR before metastasectomy were also excluded.
101	The remaining 90 patients were included in this study.
102	For each patient, the following demographic and clinicopathological factors were
103	collected from medical records: age, sex, location of the primary tumor, preoperative
104	chemotherapy history, synchronous/metachronous metastases, single/multiple metastases,
105	and tumor diameter. Synchronous lung metastasis had to be diagnosed during the
106	diagnostic work-up or within 3 months following the diagnosis of colorectal cancer. All

specimens were collected after obtaining comprehensive written informed consent from
the patients. This study was approved by the Institutional Review Board of the National
Cancer Center (IRB number 2018-030).

110

111 Histopathological evaluation

112 The pathological factors were evaluated by two pathologists (J.S and G.I). Tissues were 113 fixed in neutral buffered 10% formalin solution. The hematoxylin and eosin (H&E) slides 114 of the maximum plane of the tumor were selected. In patients with multiple metastases, 115 the largest lesion was examined. These slides were digitally scanned and analyzed using 116 a Hamamatsu Nanozoomer scanner (Hamamatsu NDP.view2) to calculate the tumor area 117 (TA), necrosis area, and the necrosis percentage (NP: necrosis area divided by TA). There were two types of necrosis in MRCL: multiple small necroses and single massive necrosis 118 119 (Figure 1). The TA and the necrosis area were measured by circumscribing the whole TA 120 and the necrosis area on the software (Supplementary Figure 1A). In the case of multiple 121 necroses, we included as many necrosis areas as possible (Supplementary Figure 1B). 122 *Immunohistochemistry*

123	All tumor tissues used in this immunohistochemical analysis were from routinely
124	formalin-fixed pathological samples taken from resected lung specimens. One block
125	containing the most extensive tumor component was selected from each specimen
126	following a review of the H&E-stained slides. Sections measuring 4 \Box m were cut from
127	the paraffin blocks and mounted on salinized slides. The sections were deparaffinized in
128	xylene, dehydrated in a graded ethanol series, and then immersed in methanol with 0.3%
129	hydrogen peroxide for 15 min to inhibit endogenous peroxidase activity. After being
130	washed with distilled water, the sections were placed in Retrieval Solution High pH
131	(DakoCytomation, Carpinteria, CA, USA). For antigen retrieval, the slides were heated
132	twice at 95°C for 20 min in a microwave oven (H2800 Microwave Processor, Energy
133	Beam Sciences Inc.) and then cooled for 1 h at room temperature. The slides were washed
134	three times in phosphate-buffered saline (PBS). Nonspecific binding was then blocked by
135	pre-incubation with 2% normal swine serum in PBS (blocking buffer) for 60 min at room
136	temperature. Individual slides were next incubated overnight at 4°C with anti-human
137	carbonic anhydrase IX, anti-human CD34, and anti-human Ki-67 antigen in the blocking
138	buffer. The slides were washed three times with PBS and then incubated with EnVision TM

139	(Dako, Denmark) for 1 h at room temperature. After extensive washing with PBS, the
140	color reaction was developed in 2% 3,3'-diaminobenzidine in 50 mM Tris-buffer (pH 7.6)
141	containing 0.3% hydrogen peroxidase for 10 minutes. The sections were finally
142	counterstained with Meyer's hematoxylin, dehydrated, and mounted. Supplementary
143	Table 1 summarizes the details of antibodies used in this study.
144	
145	Two investigators (J.S. and G.I.) independently evaluated the staining results of CAIX.
146	The expression of CAIX on tumor cells was measured as the proportion of positive tumor
147	cells to total tumor cells, yielding a range of 0-100%. For CD34 microvessel density,
148	CD34 microvessel area, and Ki-67 index, analysis was assisted by the ImageScope
149	software program (Leica Microsystems, Wetziar, Germany, Supplementary Figure 2). The
150	vascular hot spot, or the area of the tumor containing many CD34 positive vessels, was
151	detected by scanning the section at $100 \times magnification$ (Supplementary Figure 2A). Ten
152	different hot spots were chosen. In each of those fields, the numbers of microvessels
153	positive for CD34 per 0.25 mm ² were counted (Supplementary Figure 2B). The average
154	of the three areas were calculated as mean microvessel density (MVD; number of vessels

155	per mm ²). In addition to the number of vessels, we calculated the average area of the
156	CD34-positive microvessels per μm^2 as microvessel area (MVA), which reflects both
157	number and lumen area of the microvessels (Supplementary Figure 2B) [9]. Ki-67 index
158	was determined by the mean proportion of tumor cell nuclei positive for Ki-67 in three
159	different hot spots (Supplementary Figure 2C).
160	
161	
162	Statistical analysis
163	Comparisons between the necrosis percentage and clinicopathological factors and
164	immunohistochemistry factors were analyzed using a chi-square test for proportions and
165	analysis of variance (ANOVA) test for continuous variables as appropriate. All statistical
166	analyses were performed using JMP® Version 12 (SAS Institute Inc., Cary, NC).
167	
168	Results
169	Patient and pathological characteristics
170	Of the 90 patients, 63 (70%) were men. Median (range) age was 67.0 (35-85). Thirty-

171	one (34.4%) were non-smokers or light smokers (smoking index less than 50).
172	Synchronous metastasis and multiple metastases were seen in 12 (13.3%) and 13 (14.4%)
173	patients, respectively. The upper rectum was the most common site of the primary CRC
174	location and was seen in 36 (40.0%) patients (Table 1).
175	
176	Necrosis percentage and its relation to the clinical and pathological factors
177	The median (range) of tumor diameter, TA, and NP were 1.3 cm (0.5-3.0), 0.69 cm^2
178	(0.11-3.01), and 13.1% (0-71.6), respectively (Supplementary Table 2). Both tumor
179	diameter and TA were not significantly correlated to NP (p=0.21 and p=0.07, respectively,
180	Figure 2). NP was significantly higher in the patients with positive smoking history
181	compared to never/light smokers (8.1% [0-65.3] vs 17.1% [0-71.6], p=0.045). Other
182	clinical factors did not affect NP.
183	
184	
185	Immunohistochemical analysis

186 Median Ki-67 index, CAIX positive percentage, CD34 MVD, and MVA were 37.2%

187 (5.2-71.9), 15% (0-70), 65.4 per mm² (21.6-190), and 793.2 per μ m² (308.4-2238.3).

188 None of these factors was significantly associated with NP (p=0.72, p=0.56, p=0.20, and

189 p=0.09, respectively, Figure 3D, E, F and G).

190

191 Comparison of NP between the primary site and the metastatic site

193 evaluated NP in the primary site in 35 cases in the same way as the metastatic site. The

194 background of these patients was summarized in Supplementary Table 3. The median NP

195 was 0.027% (0-16.3). Although NP was not significantly correlated with tumor diameter

196 (p=0.07, Supplementary Figure 3A), it was significantly associated with the TA

197 (p=0.0001, Supplementary Figure 3B). There are some cases in which a negligible

- amount of necrosis was present in the primary site (Figure 4A), whereas massive necrosis
- 199 was seen in the pulmonary metastasis (Figure 4B). However, when investigating the
- 200 relationship between NP in the primary site and NP in the matched metastatic site, there

201 was no significant correlation (p=0.88, Figure 4C).

203 **Discussion**

204 This is the first study that evaluated the necrosis percentage in MLCR and analyzed 205 its association with clinicopathological factors, tumor size, tissue hypoxia, 206 vascularization, cell proliferation, and necrosis in the primary site. Our results revealed 207 that positive smoking history was significantly correlated to NP in MLCR, whereas other 208 clinicopathological factors were not. Biological features of MLCR investigated by 209 immunohistochemistry revealed no significant relationship with NP. 210 There have been other studies investigating necrosis in primary colorectal cancer. 211 Väyrynen et al. measured NP accurately by analyzing virtual slides, which we adopted in 212 our study, and reported that the median NP was 10%. They also found that the 213 NP was higher in advanced TMN stages; however, it was not associated with preoperative 214 chemotherapy, tumor growth (Ki-67 index), or neovascularization (MVD). Other studies 215 reported that mild to moderate necrosis was seen in about 80% of all primary site tumors, 216 and tumor necrosis was higher in the larger tumors [10, 11], which was consistent with 217 our results. Our current study revealed that MLCR, when compared to the primary site, 218 was not determined by the tumor size.

219	Preoperative chemotherapy reportedly affects necrosis in liver metastases. Some
220	reports suggest that abundant necrosis was seen in patients who had preoperative
221	chemotherapy, especially in those who had been treated with bevacizumab [12-15]. In
222	our data, NP of the patient who had preoperative chemotherapy for MRLC did not differ
223	compared to the patient who did not (13.3% [0-58.7] vs 13.1% [0-71.6], p=0.27,
224	Supplementary Figure 4). Although the chemotherapy regimens used in our patients
225	varied, our study suggested that preoperative chemotherapy was not associated with NP.
226	It remains unclear what contributes to the development of necrosis in MLCR. Another
227	possibility could be the tissue microenvironment of the lung, which is suggested by the
228	positive association between smoking history and NP found in our results. According to
229	the "seed and soil" hypothesis, the tumor cells ("seed") need a hospitable
230	microenvironment ("soil") to colonize distant organs [16]. Some research suggests that
231	smoking induces elevated inflammatory cytokines such as IL-8 and IL-1, causing
232	inflammatory changes in the lung microenvironment [17, 18]. Inflammatory processes
233	may establish a premetastatic niche for MLCR [19, 20]. Furthermore, smoking is
234	reportedly associated with increased risk of pulmonary metastasis in colorectal

235 cancer[21]. An inflammatory background might also play some role in creating the unique

- 236 microenvironment for MLCR that promotes necrosis.
- 237 In conclusion, NP in MLCR was not affected by tumor size, tissue hypoxia,
- 238 vascularization, or cell proliferation. The significant correlation between NP and smoking

239 history suggest that MLCR itself has unique biological features that promote necrosis in

- 240 the lung microenvironment of smokers. Further research is necessary to clarify the
- 241 mechanisms of necrosis in MLCR.
- 242
- 243 **Compliance with Ethical Standards**
- Funding: This work was supported in part by JSPS KAKENHI (16H05311).
- 245 Conflict of Interest: All authors declare that they have no conflict of interest.

246 Author Contributions: JS and GI contributed to the design and organization and

- 247 conducted the study and wrote the manuscript. TS and HN helped in the
- 248 immunohistochemical process and created the pathological database. MK, YO, MS, MF,
- 249 TK, AO and KS advised the direction of study and the interpretation of the data. KA, KT,
- 250 TM, MI, and MT contributed to provide surgical samples and clinical data. All the authors

- 251 reviewed and accepted the manuscript.

253	References		
254	1.	GLOBOCAN, InternationalAgencyforResearchon Cancer, WHO. Cancer Today:	
255		Estimated Number of Incident Cases, Both Sexes, Worldwide (Top 10 Cancer	
256		Sites) in 2012. 2018.	
257	2.	Inoue, M., et al., Benefits of surgery for patients with pulmonary metastases from	
258		colorectal carcinoma. Ann Thorac Surg, 2004. 78(1): p. 238-44.	
259	3.	Rama, N., et al., Lung metastases from colorectal cancer: surgical resection and	
260		prognostic factors. Eur J Cardiothorac Surg, 2009. 35(3): p. 444-9.	
261	4.	Marchevsky, A.M., R. Gupta, and B. Balzer, <i>Diagnosis of metastatic neoplasms:</i>	
262		a clinicopathologic and morphologic approach. Arch Pathol Lab Med, 2010.	
263		134 (2): p. 194-206.	
264	5.	Flint, A. and R.V. Lloyd, Pulmonary metastases of colonic carcinoma. Distinction	
265		from pulmonary adenocarcinoma. Arch Pathol Lab Med, 1992. 116(1): p. 39-42.	
266	6.	Caruso, R.A., et al., Mechanisms of coagulative necrosis in malignant epithelial	

267		tumors (Review). Oncol Lett, 2014. 8(4): p. 1397-1402.
268	7.	Weidner, N., Tumour vascularity and proliferation: clear evidence of a close
269		relationship. J Pathol, 1999. 189(3): p. 297-9.
270	8.	Vayrynen, S.A., et al., Clinical impact and network of determinants of tumour
271		necrosis in colorectal cancer. Br J Cancer, 2016. 114(12): p. 1334-42.
272	9.	Eberhard, A., et al., Heterogeneity of angiogenesis and blood vessel maturation
273		in human tumors: implications for antiangiogenic tumor therapies. Cancer Res,
274		2000. 60 (5): p. 1388-93.
275	10.	Pollheimer, M.J., et al., Tumor necrosis is a new promising prognostic factor in
276		colorectal cancer. Hum Pathol, 2010. 41(12): p. 1749-57.
277	11.	Richards, C.H., et al., Prognostic value of tumour necrosis and host inflammatory
278		responses in colorectal cancer. Br J Surg, 2012. 99(2): p. 287-94.
279	12.	Loupakis, F., et al., Histopathologic evaluation of liver metastases from colorectal
280		cancer in patients treated with FOLFOXIRI plus bevacizumab. Br J Cancer, 2013.
281		108 (12): p. 2549-56.
282	13.	Ishida, K., et al., Proposal for novel histological findings of colorectal liver

283		metastases with preoperative chemotherapy. Pathol Int, 2015. 65(7): p. 367-73.
284	14.	Wicherts, D.A., et al., Impact of bevacizumab on functional recovery and
285		histology of the liver after resection of colorectal metastases. Br J Surg, 2011.
286		98 (3): p. 399-407.
287	15.	Ng, J.K., et al., Colorectal liver metastases contract centripetally with a response
288		to chemotherapy: a histomorphologic study. Cancer, 2008. 112(2): p. 362-71.
289	16.	Paget, S., The distribution of secondary growths in cancer of the breast. 1889.
290		Cancer Metastasis Rev, 1989. 8(2): p. 98-101.
291	17.	McCrea, K.A., et al., Altered cytokine regulation in the lungs of cigarette smokers.
292		Am J Respir Crit Care Med, 1994. 150(3): p. 696-703.
293	18.	Kuschner, W.G., et al., Dose-dependent cigarette smoking-related inflammatory
294		responses in healthy adults. Eur Respir J, 1996. 9(10): p. 1989-94.
295	19.	Hiratsuka, S., et al., Tumour-mediated upregulation of chemoattractants and
296		recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol, 2006.
297		8 (12): p. 1369-75.
298	20.	Hiratsuka, S., et al., The S100A8-serum amyloid A3-TLR4 paracrine cascade

299		establishes a pre-metastatic phase. Nat Cell Biol, 2008. 10(11): p. 1349-55.
300	21.	Yahagi, M., et al., Smoking is a risk factor for pulmonary metastasis in colorectal
301		<i>cancer</i> . Colorectal Dis, 2017. 19 (9): p. O322-O328.
302		
303		

304 Figure legend

305 Figure 1. The MRCL lesions with multiple small necroses (lower magnification: A, higher

- 306 magnification: B) and single massive necrosis (lower magnification: C, higher
- 307 magnification: D).

308 Figure 2. The scatter plots showing the relationship between necrosis percentage and

- 309 tumor diameter (A) or TA (B).
- 310 Figure 3. The immunohistochemical staining of Ki-67 (A), carbonic anhydrase IX (CAIX,
- 311 B), and CD34 (C) to evaluate cell proliferation (Ki-67 index) tissue hypoxia,
- 312 vascularization (microvessel density [MVD; number of microvessels per mm²], and
- 313 microvessel area [MVA; area of microvessels per μ m²]). Scatter plots analysis revealed
- 314 none of these were correlated to the necrosis percentage (D, E, F, and G).
- 315 Figure 4. Example of the cases in which a negligible amount of necrosis was present in
- 316 the primary site (A) while massive necrosis was seen in the pulmonary metastasis (B).
- 317 There was no correlation between the necrosis percentage in the primary site and the318 metastatic site (C).
- 319

321	Supplementary Figure 1. The examples of actual measurement of the tumor area and
322	necrosis in MLCR with massive necrosis (A) and multiple necrosis (B). The tumor area
323	and the necrosis area were measured by circumscribing the whole tumor area (black line)
324	and necrosis area (red line) on the image-analyzing software (NDP.view2). The values of
325	the automatically calculated areas were shown in the yellow boxes. In the case of multiple
326	necroses, we included as many areas of necrosis areas as possible.
327	
328	Supplementary Figure 2. The image analysis of the CD34 (A, B) and Ki-67 (C, D)
329	immunohistochemical staining using ImageScope. Each hot spot was 50 μ m ² (shown in
330	green line). Each CD34 positive vessels in the hotspot is marked as a green area (B). The
331	number of vessels and vessel area were calculated as MVD and MVA, respectively. In
332	Ki67 index analysis, non-tumor cells were excluded by the dotted line (C). Cells negative,
333	1+, and 2+ for Ki-67 were marked as blue, yellow, and orange, respectively (D).
334	

335 Supplementary Figure 3. The scatter plots showing the positive relationship between

336	necrosis percentage and tumor diameter (A) or tumor area (B) in the primary sites.
337	
338	Supplementary Figure 4. Comparison of the necrosis percentage between patients who
339	had surgery alone and patients who had preoperative chemotherapy and surgery for lung
340	metastases.