Association between earwax-determinant genotypes and acquired middle ear cholesteatoma in a Japanese population

メタデータ	言語: English
	出版者:
	公開日: 2021-03-20
	キーワード (Ja):
	キーワード (En):
	作成者: 原, 聡
	メールアドレス:
	所属:
URL	https://jair.repo.nii.ac.jp/records/2002639

1 Association between earwax-determinant genotypes and acquired middle ear

2 cholesteatoma in a Japanese population

- 3 Authors: Satoshi Hara M.D. ^{a,b}*, Takeshi Kusunoki M.D., Ph.D. ^b, Hiroshi Nakagawa Ph.D. ^c,
- 4 Yu Toyoda Ph.D.^d, Shuko Nojiri Ph.D.^e, Kazusaku Kamiya Ph.D.^b, Masayuki Furukawa
- 5 M.D., Ph.D.^b, Yusuke Takata M.D., Ph.D.^b, Hiroko Okada M.D., Ph.D.^b, Takashi Anzai
- 6 M.D., Ph.D.^b, Fumihiko Matsumoto M.D., Ph.D.^b, Katsuhisa Ikeda M.D., Ph.D.^b
- ⁷ ^aDepartment of Otorhinolaryngology, Juntendo University Graduate School of Medicine,
- 8 Tokyo, Japan
- ⁹ ^bDepartment of Otorhinolaryngology, Juntendo University Faculty of Medicine, Tokyo, Japan
- 10 ^cDepartment of Applied Biological Chemistry, Graduate School of Bioscience and
- 11 Biotechnology, Chubu University, Japan
- ¹² ^dDepartment of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- 13 ^eMedical Technology Innovation Center, Juntendo University, Japan
- 14 *Corresponding author: Satoshi Hara, Department of Otorhinolaryngology, Juntendo
- 15 University Faculty of Medicine, 1-5-29, Yushima, Bunkyo-ku, Tokyo 113-0034, Japan, Tel:
- 16 +81358021229, Fax: +81358407013, E-mail: <u>s-hara@juntendo.ac.jp</u>, ORCID: 0000-0002-
- 17 5199-8363
- 18 **Conflicts of interest.** The authors declare that there is no conflict of interest.
- 19 Author Contributions. Satoshi Hara: Formal analysis, Investigation, Data Curation,
- 20 Writing Original draft preparation, Visualization. Takeshi Kusunoki: Conceptualization,
- 21 Resources, Writing Review & Editing, Project administration, Funding acquisition. Hiroshi
- 22 Nakagawa: Conceptualization, Writing Review & Editing, Funding acquisition. Yu
- 23 Toyoda: Conceptualization, Writing Review & Editing. Shuko Nojiri: Formal analysis,
- 24 Writing Review & Editing. Kazusaku Kamiya: Conceptualization. Masayuki Furukawa:
- 25 Investigation. Yusuke Takata: Investigation. Hiroko Okada: Investigation. Takashi Anzai:
- 26 Investigation. Fumihiko Matsumoto: Supervision. Katsuhisa Ikeda: Supervision.
- 27 Funding. This study was supported by a Grant-in-Aid for Scientific Research C (JSPS
- 28 KAKENHI Grant Number 15K10763 and 18K09356) that was awarded to T. Kusunoki from
- 29 the Ministry of Education, Culture, Sports, Science and Technology (MEXT); a grant
- 30 awarded to T. Kusunoki from the Institute for Environment and Gender-specific Medicine,
- 31 Juntendo University Graduate School of Medicine; and a Chubu University Grant B
- 32 (26IM01B) awarded to H. Nakagawa from Chubu University.
- 33 Keywords. ABCC11, acquired middle ear cholesteatoma, earwax, apocrine gland, volatile
- 34 organic compounds

36	<i>Objective.</i> A single nucleotide polymorphism 538G>A in the human <i>ABCC11</i> gene is a
37	determinant of the earwax morphotype. ABCC11 538GG and GA correspond to wet earwax
38	and 538AA to dry earwax. Despite a putative positive correlation between the frequency of
39	the 538G allele and prevalence of cholesteatoma, minimal clinical information is currently
40	available. We aimed to evaluate this association between the ABCC11 genotypes and acquired
41	middle ear cholesteatoma.
42	Study Design. Case-control study.
43	Setting. Single center, academic hospital.
44	<i>Methods.</i> We recruited 67 Japanese patients with acquired middle ear cholesteatoma
45	(cholesteatoma group) and 100 Japanese controls with no history of middle ear
46	cholesteatoma. We assessed the ABCC11 genotypes for all participants. Clinical information
47	was collected from the cholesteatoma group. The genotype data of 104 Japanese people from
48	the 1000 Genomes Project that represent the general population were used.
49	<i>Results.</i> The proportion of participants with <i>ABCC11</i> 538GG or GA was significantly higher
50	in the cholesteatoma group than that in the control group or general Japanese population ($p <$
51	0.001). The ABCC11 538G allele frequency was also significantly higher in the

52cholesteatoma group than that in the control group or general Japanese population (p <530.001). Multivariate logistic regression analyses revealed a significant association between54the *ABCC11* genotype and acquired middle ear cholesteatoma (odds ratio = 5.49; 95%55confidence interval = 2.61–11.5; p < 0.001).56*Conclusion.* Our results suggest that the *ABCC11* genotypes could be associated with the57development of acquired middle ear cholesteatoma among Japanese people.

59 Introduction

60	Middle ear cholesteatoma is a destructive nonneoplastic lesion of the temporal bone
61	that can gradually expand and cause complications by bone erosion ¹ . The pathogenesis of
62	middle ear cholesteatoma remains controversial. It has been proposed that the external
63	features in the external auditory canal (EAC) such as earwax and otitis externa may
64	contribute to the development of acquired middle ear cholesteatoma ^{2,3} ; however, there have
65	been few studies demonstrating this association.
66	The morphotypes of earwax are determined by a non-synonymous single nucleotide
67	polymorphism 538G>A (rs17822931: Gly180Arg) in the human ATP-binding cassette
68	transporter C11 (ABCC11) gene as follows: ABCC11 538GG and GA are wet earwax
69	genotypes, and 538AA is a dry earwax genotype ⁴ . The ABCC11 gene encodes an ATP-driven
70	efflux pump protein found in the EAC's apocrine glands, which produce earwax along with
71	the sebaceous glands ⁴⁻⁶ . Biochemical analyses have demonstrated that the Gly180Arg variant
72	is functionally null, since the protein undergoes proteasomal degradation ⁷ . Actually, ABCC11
73	protein was not detected in human apocrine glands carrying ABCC11 538AA ⁸ ; such apocrine
74	glands were not reportedly well-developed, which might be associated with loss of
75	histological function ⁹ . Besides, a previous study has shown that the <i>ABCC11</i> 538G allele is

76	dominant, while the 538A allele is a recessive (null) allele ⁴ . It has been previously reported
77	that the ABCC11 538G allele is dominant in American, African, and European populations
78	whereas the <i>ABCC11</i> 538A allele is dominant in East Asian populations ⁴ .
79	Interestingly, the incidence of cholesteatoma in the United states $(6.0/100000 \text{ per year}^{10})$ and
80	European countries (6.8–15.5/100000 per year ¹¹⁻¹³) is reportedly higher than that in East Asia
81	$(3.9/100000 \text{ per year}^{14})$. This trend seems similar to the observed ethnic differences in the
82	frequency of <i>ABCC11</i> 538G>A ¹⁵ ; the 538G allele frequencies in Americans (0.860),
83	Europeans (0.864), and Africans (0.988) are higher than that in East Asians (0.220), based on
84	the most recent phase 3 data from the 1000 Genomes Project ¹⁶ . Given this association,
85	<i>ABCC11</i> 538G>A may be related to acquired middle ear cholesteatoma ¹⁷ ; however, this
86	association has not been extensively explored.
87	The objective of our observational study was to assess the association between the
88	ABCC11 genotypes at site 538 and acquired middle ear cholesteatoma among affected
89	patients, compared with control participants and the general Japanese population.
90	
91	Material and Methods

92 Participants

93	This study was approved by the Juntendo University Committee for Ethics concerned
94	with the human genome (identification number 2020002). This study was conducted in
95	accordance with the principles for human experimentation, as defined in the 1964 Declaration
96	of Helsinki and its later amendments.
97	Between April 2013 and March 2020, 77 patients were diagnosed with middle ear
98	cholesteatoma at our hospital, underwent a surgical procedure, and provided written consent
99	to participate in this study. The inclusion criteria consisted of being aged 15 years or older
100	and being Japanese. Patients who were diagnosed with congenital middle ear cholesteatoma
101	were excluded from this study. In total, we excluded 10 patients because 4 were below 15
102	years of age, and 6 were diagnosed with congenital middle ear cholesteatoma. Finally, 67
103	patients were enrolled (cholesteatoma group).
104	During the study period, 100 individuals with no history of cholesteatoma who were
105	admitted to our hospital for various surgical procedures with blood tests comprised the
106	control group. Each participant's sex and age were recorded. Blood samples were collected
107	from all participants.
108	In order to generally include healthy participants, we compared our data with the
109	genotype distribution of ABCC11 in 104 Japanese individuals in Tokyo, Japan, which was the

110	most recent data from the 1000 Genomes Project (phase 3) ¹⁶ . These data showed that the
111	number of individuals carrying <i>ABCC11</i> 538GG, GA, and AA genotypes were 2, 21, and 81,
112	respectively. In this population, the proportion of the individuals carrying the wet earwax
113	genotypes was 22%, and the ABCC11 538G allele frequency was 0.120.
114	Because the <i>ABCC11</i> 538G allele is dominant and 538A allele is the null allele ⁴ , the
115	genotypes were compared in a dominant model in this study.
116	Characterization of the Cholesteatoma group
117	In the cholesteatoma group, we evaluated the (i) affected side of the ear; (ii) proportion
118	of bilateral cholesteatoma; (iii) proportion of recurrence of cholesteatoma; (iv) preoperative
119	air-conduction hearing level; (v) preoperative air-bone gap; (vi) history of recurrent acute
120	otitis media; (vii) history of otitis media with effusion; (viii) patulous eustachian tubes; (ix)
121	tympanic membrane perforation; (x) preoperative stage of the cholesteatoma; and (xi)
122	ossicular destruction.
123	The preoperative air- and bone-conduction hearing levels were calculated as the means
124	of the thresholds obtained at 500, 1000, and 2000 Hz. The air-bone gap was reported as the
125	difference between the air- and bone-conduction values that were determined simultaneously.
126	Hearing results were determined at the last follow-up. For each patient, each ossicle's status

127	was evaluated intraoperatively according to the rating criteria, as previously described (Table
128	1) ¹⁸ . Cholesteatoma staging was done according to the European Academy of Otology and
129	Neurotology/the Japanese Otological Society staging system (Table 2) ¹⁹ . The patients with
130	acquired middle ear cholesteatoma were divided into two groups: 1) patients carrying the wet
131	earwax genotypes, and 2) patients carrying the dry earwax genotype. To confirm that the
132	earwax morphotypes matched the ABCC11 genotype, the morphotypes of earwax from ten
133	individuals in the two groups were examined using a microscope. All of them were found to
134	match.
135	Genotyping
136	The genotypes of <i>ABCC11</i> 538G>A were examined as previously described ^{7,20} . Briefly,
137	all blood samples were collected in standard 2Na-EDTA-coated blood collection tubes. The
138	samples were subjected to proteinase K digestion; genomic DNA was then isolated using
139	phenol/chloroform extraction. Before sequencing, a part of the ABCC11 gene, including the
140	538G>A allele, was amplified from the genomic DNA by polymerase chain reaction (PCR)
141	with the following primer set: forward 5'-aacaaagctcctggctagcaag-3', and reverse 5'-
142	ccataaggtctacacctgagggtc-3'. The amplicons were then subjected to ExoSAP-IT (Cytiva,
143	Tokyo, Japan) treatment. Samples for sequencing were then prepared using a specific primer

	(5'-tcctggctagcaagaactaggatg-3' or 5'-attccatggggaaaccaagtc-3') and BigDye Terminator 3.1
145	(Applied Biosystems, Foster City, CA, USA), according to the manufacturer's instructions.
146	The sequence information obtained with the Autosequencer Model 3100 (Applied
147	Biosystems) was aligned with an AutoAssembler (Applied Biosystems) and visualized using
148	Sequencher 4.7 Demo (Hitachi Software Engineering, Tokyo, Japan). All genotyping
149	procedures were conducted by an individual blinded to the patients' information and clinical
150	data.
151	Statistics
152	Descriptive statistics were presented as medians (interquartile ranges [IQRs]) for the
153	continuous variables. The Mann-Whitney U test was used to compare the continuous
153 154	continuous variables. The Mann–Whitney U test was used to compare the continuous variables. χ^2 and Fisher's exact tests were used to compare the proportions of categorical
153 154 155	continuous variables. The Mann–Whitney U test was used to compare the continuous variables. χ^2 and Fisher's exact tests were used to compare the proportions of categorical variables. The Hardy-Weinberg equilibrium (HWE) of the genotype frequency distribution
153 154 155 156	continuous variables. The Mann–Whitney U test was used to compare the continuous variables. χ^2 and Fisher's exact tests were used to compare the proportions of categorical variables. The Hardy-Weinberg equilibrium (HWE) of the genotype frequency distribution for <i>ABCC11</i> was tested in all groups using Fisher's exact tests to confirm that the allele
153 154 155 156 157	continuous variables. The Mann–Whitney U test was used to compare the continuous variables. χ^2 and Fisher's exact tests were used to compare the proportions of categorical variables. The Hardy-Weinberg equilibrium (HWE) of the genotype frequency distribution for <i>ABCC11</i> was tested in all groups using Fisher's exact tests to confirm that the allele counts were statistically sufficient.
153 154 155 156 157 158	continuous variables. The Mann–Whitney U test was used to compare the continuous variables. χ^2 and Fisher's exact tests were used to compare the proportions of categorical variables. The Hardy-Weinberg equilibrium (HWE) of the genotype frequency distribution for <i>ABCC11</i> was tested in all groups using Fisher's exact tests to confirm that the allele counts were statistically sufficient. Univariate and multivariate logistic regression analyses were performed to estimate the

160	logistic regression analyses, we included variables to adjust for confounding factors, such as
161	sex and age. A p value less than 0.05 was considered statistically significant. All analyses
162	were performed using SPSS Statistics version 26 (IBM, Armonk, NY, USA).
163	
164	Results
165	Profiles of the participants in the cholesteatoma group, the control group, and the
166	general Japanese population are summarized in Table 3. There was no significant difference
167	in sex between the cholesteatoma group and the control group; however, the age was
168	significantly higher in the cholesteatoma group than in the control group ($p = 0.018$). The
169	genotype frequency distribution of ABCC11 was in HWE in all groups. The proportion of
170	participants carrying the wet earwax genotypes (538GG and GA) was significantly higher in
171	the cholesteatoma group than in the control group ($p < 0.001$) and in the general Japanese
172	population ($p < 0.001$). Notably, there was no significant difference ($p = 0.27$) between the
173	proportions of individuals carrying the wet earwax genotypes in the control group and the
174	general Japanese population, suggesting an accurate sample collection in this study (Figure
175	1). ABCC11 538G allele frequency was also significantly higher in the cholesteatoma group
176	than in the control group ($p < 0.001$) and in the general Japanese population ($p < 0.001$).

177	Next, to investigate the association of the ABCC11 genotypes with severity of acquired
178	middle ear cholesteatoma and history of possible predisposition to the disease, we compared
179	the profiles of patients with wet earwax genotypes to those with the dry earwax genotype in
180	the cholesteatoma group (Table 4). The proportion of recurrence of cholesteatoma was 33%
181	(11/33 patients) in the patients carrying the wet earwax genotypes and 21% (7/34 patients) in
182	the patients carrying the dry earwax genotype. Although the proportion was higher in the
183	former group, the difference was not statistically significant ($p = 0.24$). The proportion of the
184	history of recurrent acute otitis media in the patients carrying the wet earwax genotypes (9%)
185	was lower than that in the patients carrying the dry earwax genotype (27%), although the
186	difference was not statistically significant ($p = 0.064$). There were no significant differences
187	in the other parameters between the cholesteatoma patients with wet and dry earwax
188	genotypes.
189	Finally, we performed univariate and multivariate logistic regression analyses for
190	potential predictors of acquired middle ear cholesteatoma in the cholesteatoma group and the
191	control group (Table 5). Univariate logistic regression analyses revealed that acquired middle
192	ear cholesteatoma was associated with age (odds ratio [OR] = 1.02; 95% confidence interval
193	[CI] = 1.00-1.04; p = 0.023) and with the wet earwax genotypes (OR = 5.10; 95% CI = 2.49-

194	10.4; $p < 0.001$). Multivariate logistic regression analysis showed that age was significantly
195	associated with acquired middle ear cholesteatoma (OR = 1.03; 95% CI = 1.01–1.05; $p <$
196	0.015). Moreover, the wet earwax genotypes were significantly associated with acquired
197	middle ear cholesteatoma after adjusting for confounding factors (OR = 5.49 ; 95% CI =
198	2.61–11.5; $p < 0.001$). Although the age in the control group was significantly higher than
199	that in the cholesteatoma group, the ABCC11 genotype was found to be significantly
200	associated with the development of acquired middle ear cholesteatoma after adjusting for
201	confounding factors including age. Regarding the wet earwax genotypes, the OR in
202	univariate logistic regression analysis (5.10) was different from that in multivariate logistic
203	regression analysis (5.49), supposedly due to the confounding effects of age and sex.
204	
205	Discussion
206	The association between the ABCC11 genotype at site 538 and the development of acquired
207	middle ear cholesteatoma
208	To the best of our knowledge, this study investigated, for the first time, the association
209	between the ABCC11 genotypes at site 538 and acquired middle ear cholesteatoma by
210	comparing patients with the disease, control participants, and the general Japanese

211	population. The proportion of individuals carrying the wet earwax genotypes was
212	significantly higher in the cholesteatoma group than in the control group and the general
213	Japanese population (Table 3, Figure 1). Multivariate logistic regression analyses revealed
214	that the ABCC11 genotype was significantly associated with the development of acquired
215	middle ear cholesteatoma (Table 5).
216	When comparing the profiles of patients with the wet earwax genotypes to those with
217	the dry earwax genotype in the cholesteatoma group (Table 4), the proportion of recurrence
218	of cholesteatoma tended to be higher in patients carrying the wet earwax genotypes. On the
219	other hand, the proportion of the history of recurrent acute otitis media in the patients
220	carrying the wet earwax genotypes tended to be lower than that in the patients carrying the
221	dry earwax genotype. Nevertheless, further studies are needed to validate these findings.
222	Interestingly, the preoperative severity of the disease, indicated by the air conduction hearing
223	level, air-bone gap, staging, and degree of ossicular destruction, did not differ between
224	patients with the disease carrying the wet earwax genotypes and patients carrying the dry
225	earwax genotypes. Our previous study reported that Japanese patients with wet earwax
226	genotypes tended to develop bilateral rather than unilateral middle ear cholesteatoma ²⁰ .
227	However, in this study, the proportion of bilateral cholesteatoma did not differ between

228 patients carrying the wet and dry earwax genotypes. To clarify this point, further studies are 229 required.

230 Hypothesis of the mechanism underlying the association between the ABCC11 genotypes at

231 site 538 and acquired middle ear cholesteatoma

232 In the EAC, it has been reported that the *ABCC11* genotype is associated with the 233 earwax morphotype, the development of apocrine glands, and the composition of volatile organic compounds (VOCs)^{4,7,21}. 234 235 Regarding the earwax morphotype, wet earwax is sticky, whereas dry earwax lacks 236 cerumen⁴. It has been proposed that the blockage of debris transport by earwax can cause 237 acquired middle ear cholesteatoma². In this context, the different tendencies of wet and dry 238 morphotypes to accumulate earwax may be the mechanism underlying the association 239 between the ABCC11 genotypes and acquired middle ear cholesteatoma. Regarding the association between the ABCC11 genotype and apocrine glands, well-240 241 developed apocrine glands have been observed in the EACs of patients carrying the wet 242 earwax genotypes as opposed to the dry earwax genotype^{7,8}. Furthermore, the proportion of 243 subjects with wet earwax is higher in patients with hidradenitis suppurativa, which is an 244 inflammatory skin disease in the apocrine gland-bearing skin, than that in the general

245	Japanese population ^{22,23} . It has been proposed that otitis externa with high epithelial turnover
246	can contribute to acquired middle ear cholesteatoma ^{2,3} ; therefore, the maintenance of
247	apocrine glands may be associated with this disease.
248	It has been proposed that VOCs in earwax are produced from bacterial modification of
249	earwax-based compounds in the EAC ²¹ . Additionally, the amounts of several kinds of VOCs
250	are greater in wet earwax than in dry earwax ²¹ . Exposure to VOCs can lead to skin
251	inflammation, likely because of their toxicity due to oxidative stress ^{24,25} . Therefore, the high
252	amounts of VOCs in wet earwax genotypes may be associated with the development of
253	acquired middle ear cholesteatoma via otitis externa.
254	The hypothesis that the wet earwax genotypes are associated with the development of
255	otitis externa is supported by previous studies ²⁶⁻²⁸ . The bactericidal activities of dry earwax
256	are reported to be no less than those of the wet one and to even exceed those of the wet one
257	for some bacteria ^{26,27} . Furthermore, higher lysozyme activities and increased levels of
258	immunoglobulins, which are known to play a role in resistance to infection, have been found
259	in dry earwax than in wet earwax ²⁸ . Therefore, it is plausible that the wet earwax genotypes

261	We hypothesized some mechanisms of the association between the ABCC11 genotypes
262	and acquired middle ear cholesteatoma. However, the underlying mechanism of the
263	association between the ABCC11 genotypes and cholesteatoma is still unknown. Therefore,
264	further studies are needed to elucidate the pathogenesis of cholesteatoma.
265	Additionally, based on our hypothesis, the ABCC11 genotypes may also be associated
266	with diseases attributed to otitis externa, such as keratosis obturans and external auditory
267	canal cholesteatoma ^{29,30} . However, further studies are required to investigate this aspect.
268	Contribution of this study
269	Our results can contribute to the prediction of the potential risk of acquired middle ear
270	cholesteatoma; they suggest an increased risk of the disease in individuals carrying the wet
271	earwax genotypes and a decreased risk of the disease in individuals carrying the dry earwax
272	genotype. The ABCC11 genotypes (538GG/GA or AA) can be identified by clinically
273	checking the earwax phenotype. Therefore, the potential risk of acquired middle ear
274	cholesteatoma may be easily predicted without genetic testing. Checking the earwax
275	phenotype would be an easy and low-cost method for the prediction of the potential risk of
276	acquired middle ear cholesteatoma. This approach may be particularly useful in East Asian
277	countries, because the proportions of wet and dry earwax genotypes are less polarized among

278	East Asian populations; 37% wet earwax and 63% dry earwax genotypes are seen among
279	East Asian populations, whereas more than 98% wet earwax genotypes are found among
280	American, European, and African populations, based on the most recent data from the 1000
281	Genomes Project (phase 3) ¹⁶ . Furthermore, this low-cost approach will be feasible for low-
282	income and middle-income countries.
283	Our results suggest that the investigation of the association between the ABCC11
284	genotypes and acquired middle ear cholesteatoma could contribute to the prevention of its
285	development. Changing the EAC environment of individuals with wet earwax genotypes to
286	more closely resemble that of individuals carrying the dry earwax genotype may decrease the
287	risk for acquired middle ear cholesteatoma. Although the underlying mechanism of the
288	association between the ABCC11 genotypes and cholesteatoma is still unknown, the
289	prevention of acquired middle ear cholesteatoma would be particularly helpful for countries
290	with a high incidence of cholesteatoma and a high ratio of wet earwax genotypes, such as
291	American, European, and African countries.
292	In this context, our findings may contribute to elucidating the pathogenesis of
293	cholesteatoma and developing new diagnostic and therapeutic strategies.

294 Limitation of this study

295	This study is potentially limited by its case-control design and the small number of
296	individuals who were Japanese and referred for surgery in central Tokyo. Because the
297	genotype frequency distribution of ABCC11 varies by ethnic population ⁴ , further studies
298	across different countries and ethnic populations are needed. In this study, the ABCC11
299	genotypes at site 538 were compared among the subjects only in a dominant model, given the
300	small number of patients with the ABCC11 538GG genotype and the fact that 538A is a null
301	allele ⁴ . Nonetheless, our results suggest that the <i>ABCC11</i> genotypes are associated with the
302	development of acquired middle ear cholesteatoma.
303	
304	Conclusion
305	To our knowledge, this is the first report of the investigation of the ABCC11
306	genotypes at site 538 in patients with acquired middle ear cholesteatoma, control participants,
307	and the general Japanese population. Our case-control study showed that the ABCC11
308	genotypes at site 538 was associated with the acquired middle ear cholesteatoma among
309	Japanese people. Further studies are needed to reveal the molecular mechanisms of this
310	association.

312 Acknowledgements

- 313 The authors would like to thank Ms. Tomoe Ito R. A. for assisting in collecting samples and
- 314 Dr. Toshihisa Ishikawa for his kind discussion in an initial phase of this study. We would also
- 315 like to thank Editage (www.editage.com) for English language editing.

319	1.	Kuo CL. Etio	pathogenesis	s of acquire	ed cholesteatoma	: prominent theor	ries and recent

- 320 advances in biomolecular research. *Laryngoscope*. 2015;125(1):234-240.
- 321 2. Sudhoff H, Tos M. Pathogenesis of attic cholesteatoma: clinical and
- 322 immunohistochemical support for combination of retraction theory and proliferation theory.
- 323 *Am J Otol.* 2000;21(6):786-792.
- 324 3. Massuda ET, Oliveira JA. A new experimental model of acquired cholesteatoma.
- 325 *Laryngoscope*. 2005;115(3):481-485.
- 326 4. Yoshiura K, Kinoshita A, Ishida T, et al. A SNP in the ABCC11 gene is the determinant
- 327 of human earwax type. *Nat Genet.* 2006;38(3):324-330.
- 328 5. Nakano M, Miwa N, Hirano A, Yoshiura K, Niikawa N. A strong association of axillary
- 329 osmidrosis with the wet earwax type determined by genotyping of the ABCC11 gene. BMC
- 330 *Genet.* 2009;10:42.
- 331 6. Campos A, Arias A, Betancor L, et al. Study of common aerobic flora of human
- 332 cerumen. J Laryngol Otol. 1998;112(7):613-616.
- 333 7. Toyoda Y, Sakurai A, Mitani Y, et al. Earwax, osmidrosis, and breast cancer: why does

- 334 one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type?
- 335 *FASEB J.* 2009;23(6):2001-2013.
- 336 8. Toyoda Y, Takada T, Gomi T, Nakagawa H, Ishikawa T, Suzuki H. Clinical and
- 337 molecular evidence of ABCC11 protein expression in axillary apocrine glands of patients
- 338 with axillary osmidrosis. *Int J Mol Sci.* 2017;18(2):417.
- 339 9. Toyoda Y, Gomi T, Nakagawa H, Nagakura M, Ishikawa T. Diagnosis of human
- axillary osmidrosis by genotyping of the human ABCC11 gene: clinical practice and basic
- 341 scientific evidence. *BioMed Res Int.* 2016;2016:7670483.
- 342 10. Harker LA. Cholesteatoma an incidence study. In McCabe, B.F.: Sade, J., Abramson,
- 343 M. Ed., First International Conference on Cholesteatoma. Birmingham, Aesculapius
- 344 Publishing Co;1977;308-12.
- 345 11. Tos M. Incidence, etiology and pathogenesis of cholesteatoma in children. Adv
- 346 Otorhinolaryngol. 1988;40:110-117.
- 347 12. Padgham N, Mills R, Christmas H. Has the increasing use of grommets influenced the
- 348 frequency of surgery for cholesteatoma? *J Laryngol Otol.* 1989;103:1034-1035.
- 349 13. Britze A, Moller ML, Ovesen T. Incidence, 10-year recidivism rate and prognostic
- 350 factors for cholesteatoma. *J Laryngol Otol.* 2017;131:319-328.

- 351 14. Shibata S, Murakami K, Umeno Y, Komune S. Epidemiological study of cholesteatoma
- 352 in Fukuoka City. J Laryngol Otol. 2015;129(Suppl 2):S6-S11.
- 353 15. Ishikawa T, Toyoda Y, Yoshiura K, Niikawa N. Pharmacogenomics of human ABC
- 354 transporter ABCC11: new insight into apocrine gland growth and metabolite secretion. *Front*
- 355 *Genet.* 2013;3:306.
- 356 16. A Deep Catalog of Human Genetic Variation. 1000 Genomes Project phase 3 browser.
- 357 http://phase3browser.1000genomes.org/index.html. December 2, 2020.
- 358 17. Nakagawa H, Toyoda Y, Albrecht T, et al. Are human ATP-binding cassette transporter
- 359 C11 and earwax associated with the incidence of cholesteatoma? *Med Hypotheses*.
- 360 2018;114:19-22.
- 361 18. Martins O, Victor J, Selesnick S. The relationship between individual ossicular status
- and conductive hearing loss in cholesteatoma. *Otol Neurotol.* 2012;33(3):387-392.
- 363 19. Yung M, Tono T, Olszewska E, et al. EAONO/JOS Joint Consensus Statements on the
- 364 Definitions, Classification and Staging of Middle Ear Cholesteatoma. *J Int Adv Otol.*
- 365 2017;13(1):1-8.
- 366 20. Kusunoki T, Nakagawa H, Tsukamoto M, et al. Possible association between middle
- 367 ear cholesteatoma and a single nucleotide polymorphism 538G>A in ABCC11, a human ear

- 368 wax type determinant. J Mol Genet Med. 2018;12(3).
- 369 21. Prokop-Prigge KA, Thaler E, Wysocki CJ, Preti G. Identification of volatile organic
- 370 compounds in human cerumen. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;953–
- 371 954:48-52.
- 22. Zouboulis CC, Desai N, Emtestam L, et al. European S1 guideline for the treatment of
- 373 hidradenitis suppurativa/acne inversa. J Eur Acad Dermatol Venereol. 2015;29(4):619-644.
- 374 23. Shibuya Y, Morioka D, Nomura M, Zhang Z, Utsunomiya H. Earwax of patients with
- 375 hidradenitis suppurativa: a retrospective study. Arch Plast Surg. 2019;46(6):566-571.
- 376 24. Coleman CA, Hull BE, McDougal JN, Rogers JV. The effect of m-xylene on
- 377 cytotoxicity and cellular antioxidant status in rat dermal equivalents. *Toxicol Lett.*
- 378 2003;142(1–2):133-142.
- 379 25. Yoon HI, Hong YC, Cho SH, et al. Exposure to volatile organic compounds and loss of
- 380 pulmonary function in the elderly. *Eur Respir J.* 2010;36(6):1270-1276.
- 381 26. Chai TJ, Chai TC. Bactericidal activity of cerumen. Antimicrob Agents Chemother.
- 382 1980;18(4):638-641.
- 383 27. Stone M, Fulghum RS. Bactericidal activity of wet cerumen. Ann Otol Rhinol
- 384 *Laryngol.* 1984;93(2 Pt 1):183-186.

385	28.	Petrakis NL, Do	herty M,	Lee RE,	Smith SC,	Page NL.	Demonstration a	and im	plications
		,	2			<u> </u>		,	

- 386 of lysozyme and immunoglobulins in human ear wax. *Nature*. 1971;229(5280):119-120.
- 387 29. Chong AW, Raman R. Keratosis obturans: a disease of the tropics? *Indian J*
- 388 *Otolaryngol Head Neck Surg.* 2017;69(3):291-295.
- 389 30. Holt JJ. Ear canal cholesteatoma. *Laryngoscope*. 1992;102(6):608-613.
- 390

Rating	Criteria
1	Completely normal
2	Cholesteatoma abuts the ossicle, but the ossicle is still intact
3	The ossicle is partially eroded by cholesteatoma
4	The ossicle is completely absent (for the malleus and incus) or
	if the superstructure is eroded (for the stapes).

The status of each ossicle of patients with cholesteatoma was evaluated

intraoperatively, according to the criteria for rating as previously described¹⁸.

Staging	Criteria
Ι	Cholesteatoma localized in the primary site
II	Cholesteatoma involving two or more sites
III	Cholesteatoma with extracranial complications
IV	Cholesteatoma with intracranial complications

Cholesteatoma staging of patients with cholesteatoma was done according to the

European Academy of Otology and Neurotology/the Japanese Otological Society

staging system¹⁹.

397	Japanese population

Characteristics	Cholesteatoma	Control	Р	General	Р
	group	group		Japanese	
	(<i>n</i> = 67)	(<i>n</i> = 100)		population	
				(<i>n</i> = 104)	
Sex (male), <i>n</i>	37 (55%)	55 (55%)	0.98		
(%)†					
Age (years),	63.0 (44.0,	50.0 (35.0,	0.018*		
median (IQRs)	72.0)	65.0)			
Genotypes of the			<0.001**		<0.001**
ABCC11, n (%)‡			*		*
538GG	2 (3.0%)	1 (1.0%)		2 (1.9%)	
538GA	31 (46%)	15 (15%)		21 (20%)	
538AA	34 (51%)	84 (84%)		81 (78%)	
<i>ABCC11</i> 538G	0.261	0.085	<0.001**	0.120	<0.001**
allele frequency			*		*

The *ABCC11* genotype data of 104 Japanese individuals in Tokyo, Japan, from the 1000 Genomes Project (phase 3) were used to represent the general Japanese population¹⁶. The *P* value was calculated by comparing cholesteatoma group with control group and cholesteatoma group with the general Japanese population. IQR, interquartile range; *ABCC11*, *adenosine triphosphate-binding cassette*

transporter C11; \dagger , χ^2 test; \ddagger , Fisher's exact test; *, p < 0.05; ***, p < 0.001

Table 4. Profiles of the patients carrying the wet and the dry earwax genotypes in the

400 cholesteatoma group

Characteristics	Patients carrying	Patients carrying	Р
	the wet earwax	the dry earwax	
	genotypes (<i>n</i> =	genotype ($n = 34$)	
	33)		
Sex (male), <i>n</i> (%)†	18 (55%)	19 (56%)	0.91
Age (years), median (IQRs)	64.0 (38.0, 73.0)	63.0 (38.0, 71.3)	0.39
Affected side (right), n (%)†	15 (45%)	18 (53%)	0.54
Proportion of bilateral	14 (42%)	14 (41%)	0.92
cholesteatoma, n (%)†			
Proportion of recurrence of	11 (33%)	7 (21%)	0.24
cholesteatoma, n (%)†			
Preoperative air conduction	50.0 (34.2, 70.9)	51.7 (30.9, 73.4)	0.90
hearing level (dB), median			
(IQRs)			
Preoperative air-bone gap	30.0 (23.3, 42.5)	27.5 (19.6, 42.1)	0.54

(dB), median (IQRs)

History of recurrent acute	3 (9%)	9 (27%)	0.064
otitis media, n (%)†			
History of otitis media with	3 (9%)	3 (9%)	1.00
effusion, n (%)‡			
Patulous eustachian tubes, n	6 (18%)	4 (12%)	0.51
(%)‡			
Tympanic membrane	2 (6.1%)	3 (8.8%)	1.00
perforation, n (%)‡			
Preoperative stage, $n (\%)$;			1.00
Ι	3 (9.1%)	5 (15%)	
II	23 (70%)	18 (53%)	
III	7 (21%)	11 (32%)	
IV	0 (0%)	0 (0%)	
The rate of ossicular			0.47
destruction, n (%)‡			

1	1 (3%)	1 (3%)

2	9 (27%)	9 (26%)
3	12 (36%)	13 (34%)
4	11 (33%)	11 (32%)

Wet earwax genotypes, ABCC11 538GG and GA genotypes; Dry earwax genotype,

ABCC11 538AA genotype; ABCC11, adenosine triphosphate-binding cassette

transporter C11; IQR, interquartile range; \dagger , χ^2 test; \ddagger , Fisher's exact test

401

403 **Table 5.** Univariate and multivariate logistic regression analyses for the association between

404 the *ABCC11* genotype and acquired middle ear cholesteatoma in the cholesteatoma group and

405 the control group

Characteristics	Univariate		Multivariate	
	OR (95% CI)	Р	OR (95% CI)	Р
Age	1.02 (1.00–1.04)	0.023*	1.03 (1.01–1.05)	0.015*
Sex	0.99 (0.53–1.85)	0.98	0.78 (0.39–1.56)	0.49
Wet earwax	5.10 (2.49–10.4)	<0.001***	5.49 (2.61–11.5)	<0.001***
genotypes (vs. dry				
earwax genotype)				

OR, Odds ratio; CI, confidence interval; Wet earwax genotypes, ABCC11 538GG

and GA genotypes; Dry earwax genotype, ABCC11 538AA genotype; ABCC11,

adenosine triphosphate-binding cassette transporter C11; *, p < 0.05; ***, p < 0.05; *

0.001

406

408 Figure legend

- 409 **Figure 1**. *ABCC11* genotypes in the cholesteatoma group, control group, and general
- 410 Japanese population
- 411 *******, *p* < 0.001

