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Abstract

Advanced glycation end products (AGEs) and their receptor (RAGE) system evoke
inflammatory reactions and insulin resistance in adipocytes. Spa-derived green alga
Mucidosphaerium sp. (MS) had anti-inflammatory properties in vitro. We examined
here whether and how MS could ameliorate insulin resistance in fructose-rich diet-fed
rats, and conducted a randomized, double blind, placebo-controlled trial to investigate
the effects of MS on insulin resistance in overweight subjects. Oral administration of
MS for 8 weeks significantly decreased random blood glucose, and fasting insulin,
oxidative stress levels, and improved homeostasis model assessment of insulin
resistance (HOMA-IR) values in fructose-fed rats, which were associated with the
reduction of AGEs, RAGE, 8-hydroxy-2’-deoxy-guanosine, NADPH oxidase activity,
macrophage and lymphocyte infiltration, monocyte chemoattractant protein-1 (MCP-1)
expression, and adipocyte size in the adipose tissues as well as restoration of
adiponectin levels. MS decreased the AGE-induced NADPH oxidase activity, ROS
generation, MCP-1 and RAGE gene expression, and lipid accumulation in differentiated
adipocytes, while it restored the decrease in adiponectin mRNA levels. An anti-oxidant,
N-acetylcysteine mimicked the effects of MS on ROS generation, RAGE gene
expression, and lipid accumulation. Oral intake of MS for 12 weeks significantly
decreased systolic and diastolic blood pressure, fasting plasma glucose, fasting insulin,
HOMA-IR, HDL-cholesterol and creatinine in overweight subjects. Baseline-adjusted
diastolic blood pressure, fasting plasma glucose, fasting insulin, and HOMA-IR values
were significantly lower in MS treatment group than in placebo. Our present findings
suggest that MS may improve insulin resistance by blocking the AGE-RAGE-oxidative
stress axis in the adipose tissues.

Keywords; Advanced glycation end products (AGEs), Adipose tissue, Inflammation,
Insulin resistance, RAGE

Abbreviations
8-is0-PGF2a, 8-iso prostaglandin F2a,
AGEs, advanced glycation end-products

CML, carboxymethyllysine
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CV, dry powder of Chlorella vulgaris CK22

DGDG, digalactosyl diacylglycerol

HOMA-IR, homeostasis model assessment of insulin resistance

NAC, N-acetylcysteine

MCP-1, monocyte chemoattractant protein-1

MS, Mucidosphaerium sp.

MSGL, MS-derived glycolipids

RAGE, receptor for AGEs

ROS, reactive oxygen species



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Introduction
Monosaccharides, such as glucose, glyceraldehyde, and frucotse react non-
enzymatically with amino gropus of proteins, lipids, and nucleic acids to form Amadori
compounds, which could be subsequently converted to advanced glycation end products
(AGEs) over a course of days to weeks via a complex series of reactions.-®
Modification of amino groups of molecules by AGEs alter the structural integrity and
functional property of numerous types of proteins and lipids, including collagen and
low-density lipoprotein, thereby being involved in atherosclerotic cardiovascular
disease and osteoporosis.'? Furthermore, AGE-modified molecules can interact with a
cell surface receptor, RAGE, which evokes oxidative stress and inflammatory reactions,
thereby contributing to various aging and/or diabetes-related complications.' Since the
formation and accumulation of AGEs have progressed under hyperglycemic, oxidative
stress, and/or inflammatory conditions and that RAGE expression is enhanced by its
ligand AGEs, AGE-RAGE interaction may form a positive feedback loop that further
promotes the development of aging-related disorders.!®

Insulin resistance and obesity are associated with inflammatory conditions, which
also play a role in the development and progression of aging-related disorders, such as

diabetes, cancer, and Alzheimer’s disease.'™'2 We have previously found that
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interaction of AGEs with RAGE evokes oxidative stress and inflammatory reactions in
adipocytes, being involved in insulin resistance of obese type 2 diabetic mice.'3'*
Furthermore, we have found that serum levels of AGEs are independently correlated
with inflammatory activity in visceral adipose tissues and homeostasis model
assessment of insulin resistance (HOMA-IR), a marker of insulin resistance in
humans.'>16 These observations suggest that activation of the AGE-RAGE axis could
contribute to insulin resistance, which may serve as “common soil” for promoting
various aging-related diseases and also be a therapeutic target for these devastating
disorders.

We have isolated a novel Mucidosphaerium sp. strain (MS) from hot springs in
Beppu city, one of the most famous resorts in Japan with the world's second-largest
number of hot springs and recently found that extract of the green alga exhibits anti-
inflammatory and anti-oxidative properties in cultured human dermal fibroblasts,
synoviocytes, and papilla cells.!” Several types of algae have been reported to inhibit the
formation of AGEs in vitro.1820 However, effects of MS on AGE-RAGE axis,
inflammation, and insulin resistance remain to be elucidated. Therefore, in this study,
we examined whether and how MS could ameliorate insulin resistance in high fructose

diet-fed rats, studied the effects of MS on AGE-exposed human differentiated
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adipocytes, and then conducted a randomized, double blind, placebo-controlled trial to
investigate the effects of oral intake of MS on anthropometric and metabolic parameters,

including HOMA-IR in apparent healthy overweight Japanese adults.

Research Design and Methods

Materials

Bovine serum albumin (BSA), D-glyceraldehyde, and N-acetylcysteine (NAC) were
purchased from Sigma-Aldrich (St. Louis, MO). Digalactosyl diacylglycerol (DGDG)
was purchased from Avanti Polar Lipids, Inc. (Alabaster, AL). Fructose-enriched diet
consists of 60% fructose, 20.7% casein, 0.3% methionine, 5% lard, and 9.25% cellulose
with vitamin and mineral mixture (350 kcal/100g) (Oriental Yeast Co., Ltd., Shiga,
Japan). Dietary fructose is replaced by cornstarch in control diet. Dry powder of
Chlorella vulgaris CK22 (CV) which contained 10mg DGDG/g CV was provided from

Chlorella Industry Co., LTD. (Tokyo, Japan).

Preparation of MS powder
MS was isolated from hot springs in Beppu city and cultured as described previously.!”

Dry powder of MS was obtained by a spray dryer.
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Preparation of AGEs
AGEs were prepared by incubating BSA (25 mg/ml) with 0.1 M D-glyceraldehyde at
37 °C for 7 days as described previously.?! Control non-glycated BSA was incubated in

the same conditions except for the absence of D-glyceraldehyde.

Animals

Six-week-old male Wistar rats (Charles River Breeding Laboratories, Yokohama,
Japan) were fed a fructose-rich diet (Fructose) or control diet (Control) with or without
0.02% MS (0.2mg/g diet). Number of Control rats, Fructose-fed rats, and Fructose+MS-
fed rats were 6, 6, and 8, respectively. Systolic and diastolic blood pressure (BP) and
heart rate were monitored by a tail-cuff sphygmomanometer (BP-98A; Softron, Tokyo,
Japan) at 8 weeks after treatment. Body weight was measured at 9 weeks after treatment,
and then rats were sacrificed. Visceral adipose tissues were excised for
immunohistochemical and morphological analyses, and blood biochemistry was
determined as described previously.?? Serum levels of AGEs were measured with an
enzyme-linked immunosorbent assay (ELISA); one unit (U)/ml corresponded to half

maximal (50%) inhibitory concentration of AGEs.?® Serum and urinary levels of 8-iso
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prostaglandin F2o (8-iso-PGF2a), a marker of oxidative stress were determined with
ELISA kits derived from Enzo Life Science Inc. (Farmingdale, NY). All experimental
procedures were conducted in accordance with the National Institutes Health Guide for
Care and Use of Laboratory Animals and were approved by the ethnical committee of

Kurume University School of Medicine.

Immunostaining and morphological analysis

Adipose tissue sections derived from visceral fats were incubated overnight at 4°C with
antibodies, and the reactions were visualized with a Histofine Simple Stain Rat MAX-
POMULTI kit (Nichirei Co., Japan).?2?* Antibodies raised against AGEs,
carboxymethyllysine (CML) (TransGenic Inc., Japan, cat #KH011-02, lot #1G240914),
one of the well characterized AGEs, RAGE (Santa Cruz Biotechnology, Dallas, TX, cat
#5C-5563, Lot #I2515), 8-hydroxy-2’-deoxy-guanosine (8-OHdG) (Nikken Seil Co.,
Shizuoka, Japan, cat #MOG-100P, lot #008MOG-100P), F4/80 (Abcam, Cambridge,
MA, cat #ab111101, lot #GR201096-5), CCR7 (Epitomics Inc., Burlingame, CA, cat
#2059-1, lot #Y105952SD), monocyte chemoattractant protein-1 (MCP-1) (Abcam, cat
#ab7202, lot #GR47125-26), and adiponectin (Santa Cruz Biotechnology, cat #SC-

26496, lot  #F2204) were used for immunohistochemical  analyses.



473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

Immunohistoreactivity in 5 different fields in each sample was measured by cellSens
software version 1.14 (Olympus Co., Japan). For morphological analysis, the sections
were stained with hematoxylin and eosin, and adipocyte size in 6 different field of each

sample was analyzed by cellSens software.

Measurement of NADPH oxidase activity
Adipose tissue NADPH oxidase activity was measured by a luminescence assay as

described previously.?

Preparation of MS-derived glycolipids (MSGL)
Crude lipids were extracted from MS powder as described before.?> Glycolipids were
further fractionated with n-hexane and 10% water/methanol according to the method of

Marcolongo et al.?8

Cell experiments
3T3-L1 cells (American Type Culture Collection, Manassas, VA) were maintained in
high-glucose Dulbecco's Modified Eagle's Medium (DMEM) (Sigma) supplemented

with 10% fetal bovine serum (Thermo Fisher Scientificc Waltham, MA) and



differentiated to mature adipocytes using insulin, dexamethasone, and 3-isobutyl-1-
methyl-xanthine as described previously.'® After the medium was changed back to
original DMEM containing 10 % fetal bovine serum, differentiated adipocytes were
treated with 100 pg/ml AGE-modified BSA or non-glycated BSA in the presence or
absence of 0.8~3.2 pg/ml MS, 0.8~3.2 ug/ml CV, 5~20 mM NAC, 0.2~1 pg/ml MSGL,
or 0.001~10 pg/ml DGDG for the indicated time periods. Then real-time reverse
transcription-polymerase chain reactions (RT-PCR) analysis and Oil Red O staining
were performed, and reactive oxygen species (ROS) and NADPH oxidase activity were

measured. 3T3-L1 cells in passage numbers between 5 and 20 were used.

ROS measurement
Superoxide generation was measured with carboxy-H,DFFDA (Life Technologies

Japan) as described previously.?* ROS in 9 different fields in each sample was measured.

RT-PCR

RT-PCR was performed as described previously.?* Identifications of primers for mouse

RAGE, MCP-1, adiponectin, 18S ribosomal RNA, 28S ribosomal RNA, and TATA-box

10
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binding protein genes were Mm01134790_g1, Mm004441242_m1 Mm00456425_m1,

Hs99999901_s1, Mm03682676_s1, and Mm00446973_m1, respectively.

Oil Red O staining
Intracytoplasmic lipids were quantitated by staining the cells with Oil Red O (Sigma) as

described previously.13

Test capsules

Composition of MS-containing brown opaque hard gelatin capsule was 100 mg MS
powder, 257 mg starch, 7.4 mg calcium stearate, and 5.6 mg micronized silica. Same
shape and color placebo capsule included the same quantity of additives but MS powder

was replaced with 100 mg starch.

Subjects and clinical study design

Fifty-three apparent healthy, non-diabetic Japanese adults with glycated hemoglobin
(HbA1c) values less than 6.5 % (20~64 years old) whose body-mass index was >25 but
<30 kg/m? were recruited into the study. We excluded any subjects with hypertension,

hypercholesterolemia (total cholesterol >240 mg/dl), liver diseases with aspartate

11
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aminotransferase, alanine aminotransferase (ALT) or y-glutamyl transpeptidase >2.5x
upper limit of normal, acute infections, active inflammatory diseases, anemia,
pregnancy, lactation, a history of hypersensitivity reactions to test capsules, heart
disease or cancer, or who had taken drugs or supplements that could affect blood
glucose or insulin levels. During the study period, participants were instructed not to
change their life habits. This study was a single center, randomized, double-blind,
placebo-controlled clinical trial to examine the effects of oral intake of 500 mg MS (5
capsules) once a day for 12 weeks on insulin resistance and metabolic parameters in
overweight adults. Based on the findings in animal experiments, clinical study was
designed. The study was conducted in accordance with the Declaration of Helsinki and
all procedures were approved by the Institutional Review Board of the Shiba Palace
Clinic (Tokyo, Japan). Written informed consent was obtained from all the participants
prior to their participation in the study. The trial was registered with the University
Hospital Medical Information Network clinical trials database (number UMIN

000031585).

Data collection

12



709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767

Weight and height were measured to calculate body mass index (kg/m?). Waist
circumference was measured at the umbilical level in the late exhalation phase. After at
least 5-min rest, BP was measured in supine position using a standard
sphygmomanometer.

After overnight fast, peripheral blood was drawn from the antecubital vein. Blood
chemistry was analyzed with standard methods by BML, Inc., Tokyo, Japan. Insulin
resistance was estimated using the HOMA-IR from fasting plasma glucose and fasting
insulin concentrations using the following formula: HOMA-IR=(fasting insulin [pU/ml]

x fasting plasma glucose [mg/dl]) /405.

Statistical analysis

All data are presented as mean + standard deviation. Student’s t-test and analysis of
variance (ANOVA) followed by Steel-Dwass or Turkey HSD were performed for
statistical comparisons among groups in cell culture and animal model experiments,
respectively. Treatment groups were compared at baseline by using an unpaired t-test.
Paired t-test was performed for comparisons between baseline and post-treatment. Post-

treatment clinical variables were adjusted for baseline values, and statistical differences

13
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between the two groups were analyzed by one-way analysis of covariance, ANCOVA.

p<0.05 was considered to be statistically significant.

Results

Safety of MS

Acute and chronic oral toxicity studies of MS were performed according to the
guidelines of Organization for Economic Co-operation and Development.?28 No
treatment-related mortality or adverse effects were observed in 5 male ICR mice at
2,000 mg/kg body weight of MS during the 14 day-observation period. Furthermore,
there were no signs of toxicity in 5 male and 5 female SD rats received 1,000 mg/kg
body weight of MS for 90 days. Ames test also revealed no mutagenic properties of MS.
Heavy metals were not detectable in MS powder, while content of arsenic was within

the acceptable range (0.6 ppm).

Effects of MS on clinical variables in Fructose-fed rats
We first examined the effects of MS on clinical variables in Fructose-fed rats. There
were no differences of spontaneous food intake among three groups (ca. 22-23 g/day).

As shown in Table 1, random blood glucose, fasting insulin, HOMA-IR, ALT, ratio of

14
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liver weight to body weight in Fructose-fed rats were significantly higher than those of
Control rats. Oral administration of MS for 8 weeks significantly decreased random
blood glucose, fasting insulin, and HOMA-IR values, but increases in ALT and ratio of
liver weight to body weight of Fructose-fed rats were not ameliorated by the treatment

with MS.

Effects of MS on AGE-RAGE-oxidative stress system in the adipose tissues of
Fructose-fed rats

As shown in Fig. 1A-C, levels of AGE;, CML, and RAGE in the adipose tissues of
Fructose-fed rats were significantly increased compared with Control rats, all of which
were prevented by the treatment with MS. Furthermore, NADPH oxidase activity and 8-
OHAG levels in the adipose tissues, and serum and urinary excretion values of 8-iso-
PGF2a were significantly higher in Fructose-fed rats than in Control rats (Fig. 1D-G).
Oral administration of MS for 8 weeks completely inhibited the increases in these

oxidative stress markers of Fructose-fed rats.

Effects of MS on macrophage and lymphocyte infiltration, MCP-1 and adiponectin

Expression, and remodeling in the adipose tissues of Fructose-fed rats

15
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As shown in Fig. 2A and B, macrophage and lymphocyte infiltration into the adipose
tissues of Fructose-fed rats, evaluated by F4/80 and CCR7 immunostainings,22° were
significantly increased compared with Control rats, which were completely blocked by
the treatment with MS. Moreover, compared with Control rats, MCP-1 levels in the
adipose tissues were significantly higher and adipocyte size grew larger in Fructose-fed
rats, while adipose tissue adiponectin expression levels were decreased (Fig. 2C-E).
Eight-week oral administration of MS completely prevented the MCP-1 overexpression
in the adipose tissues as well as adipocyte remodeling and restored the decrease in

adiponectin expression of Fructose-fed rats (Fig. 2C-E).

Effects of MS on NADPH oxidase activity, ROS generation, RAGE, MCP-1, and
adiponectin gene expression, and intracytoplasmic lipid accumulation in AGE-exposed
adipocytes

AGEs significantly increased NADPH oxidase activity and ROS generation in
differentiated adipocytes, which were inhibited by 0.8, 1.6, and 3.2 pg/ml MS (Fig. 3A
and B). MS at 0.8, 1.6, and 3.2 pg/ml significantly reduced ROS generation in non-
glycated control BSA-exposed adipocytes as well (Fig. 3B). MS at 0.8 and 1.6 pg/ml,

but not at 3.2 pg/ml significantly inhibited basal and AGE-induced RAGE gene

16



945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003

expression in adipocytes (Fig. 3C). Although AGEs did not affect MCP-1 gene
expression, they significantly decreased adiponectin mRINA levels in AGE-exposed
differentiated adipocytes (Fig. 3D and E). MS at 3.2 pg/ml significantly decreased
MCP-1 mRNA levels and restored adiponectin gene expression in adipocytes (Fig. 3D
and E). AGEs increased intracytoplasmic lipid accumulation in differentiated adipocytes,
which was significantly suppressed by 0.8, 1.6, and 3.2 pg/ml MS (Fig. 3F). MS at 3.2
pg/ml also reduced lipid accamulation in BSA-exposed adipocytes (Fig. 3F).

An anti-oxidant NAC dose-dependently inhibited the AGE-induced ROS
generation, RAGE gene expression, and intracytoplasmic lipid accumulation in
differentiated adipocytes (Fig. 3G-I). Regardless of the presence or absence of AGEs,
NAC at 10 or 20 mM significantly reduced ROS generation in adipocytes, while 5~20
mM NAC decreased lipid accumulation. NAC at 20 mM completely inhibited up-
regulation of RAGE mRNA levels in AGE-exposed adipocytes. CV had a tendency to
inhibit the AGE-induced ROS generation and intracytoplasmic lipid accumulation in
differentiated adipocytes in a dose-dependent manner, but the effects were modest and

not significant (Fig. 3J and K).

17
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Effects of MSGL and DGDG on ROS generation and intracytoplasmic lipid
accumulation in AGE-exposed adipocytes

Both MSGL at 0.2~1 pug/ml and DGDG at 0.001~10 pg/ml significantly decreased the
AGE-induced ROS generation in adipocytes (Fig. 4A and B). MSGL at 1 pg/ml reduced
basal levels of ROS generation in adipocytes (Fig. 4A). MSGL at 0.2, 0.4 and 1 pg/ml
and DGDG at 0.01~10 pg/ml also significantly suppressed intracytoplasmic lipid

accumulation in AGE-exposed adipocytes (Fig. 4C and D).

Effects of oral intake of MS on metabolic parameters in overweight humans

A clinical study outline is shown in Fig. 5. We screened 53 apparently healthy
overweight Japanese adults (25< body-mass index <30 kg/m?) aged 20~64 years old
whose HbAlc values were less than 6.5 %. Twenty-three participants met exclusion
criteria and were not included in the present study. Thirty subjects were equally
randomized to either active (MS-containing capsules) (N=15) or placebo treatment
group (N=15). One subject in the placebo group declined to continue to participate in
the study. Finally, 29 participants (N=15 in active treatment group and N=14 in placebo
treatment group) completed the study. Adherence rates in taking 5 capsules per day

were 99.4 % and 99.9 % in active treatment group and placebo group, respectively.

18
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Clinical variables are shown in Table 2. There were no significant differences in
clinical variables at baseline except for HDL-cholesterol between active and placebo
treatment groups. HDL-cholesterol levels were significantly higher in active treatment
group than in placebo group, but individual values of both groups were within the
normal range. Oral intake of MS for 12 weeks significantly decreased systolic and
diastolic BP, heart rate, fasting plasma glucose, fasting insulin, HOMA-IR, HDL-
cholesterol and creatinine values, while blood urea nitrogen and ALT were elevated
after placebo capsule treatment (Table 2). There were significant differences in baseline
value-adjusted diastolic BP, fasting plasma glucose, fasting insulin, and HOMA-IR at
12 weeks between the two groups; all the parameters were significantly lower in active
treatment group than in placebo group. No MS treatment-related adverse effects were

observed during the study period.

Discussion

In this study, we showed for the first time that oral administration of spa-derived novel
green alga, Mucidosphaerium sp., MS for 8 weeks significantly decreased random
blood glucose, fasting insulin, and HOMA-IR values in Fructose-fed rats. Treatment
with MS for 8 weeks also completely suppressed the increased levels of AGEs, CML,

NADPH oxidase activity, and 8-OHdG, a marker of oxidative stress in the adipose

19



1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
11562
11563
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

tissues of Fructose-fed rats in association with the reduction of serum and urinary
excretion values of 8-iso-PGF2o., another marker of oxidative stress. Moreover, MS
inhibited the increase of macrophage and lymphocyte infiltration evaluated by F4/80
and CCR7 immunostainings, MCP-1 expression, and adipocyte size in the adipose
tissues of Fructose-fed rats, while it restored the decreased expression levels of
adiponectin. High-fat diet has been shown to increase urinary excretion levels of 8-
OHdG, gene expression of components of NADPH oxidase and MCP-1, formation of o-
dicarbonyls, precursors of AGEs, and adipocyte cell size in the visceral adipose tissues
of mice and reduce adipose tissue adiponectin mRNA levels as well as insulin
sensitivity, all of which are inhibited by the treatment of pyridoxamine, a blocker of
AGE formation.3%3! Furthermore, we previously found that serum levels of AGEs were
associated with insulin resistance in KK-AY mice, and pyridoxamine dose-dependently
reduced serum AGEs levels and ameliorated insulin sensitivity in these obese and type 2
diabetic animals.'# In addition, RAGE-deficient or soluble RAGE-treated mice were
resistant to high-fat diet-induced metabolic derangements; they were more insulin
sensitive, and displayed less macrophage infiltration, smaller adipocyte cell size, lower
MCP-1 and higher adiponectin gene expression in the adipose tissues, compared with

wild-type non-treated littermates.3 There is accumulating evidence that macrophage
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infiltration and inflammatory reactions in the adipose tissues play a central role in
insulin resistance.3*-33 AGE-RAGE interaction evokes inflammatory reactions in various
types of cells, including visceral adipocytes via NADPH oxidase-derived ROS
generation.>*+36 Moreover, inhibition of NADPH oxidase-derived oxidative stress by

pigment epithelium-derived factor has been shown to inhibit macrophage infiltration,

- adipocyte hypertrophy, and inflammatory reactions and ameliorate dysregulation of

adipocytokines and insulin resistance in type 2 diabetic rats with obesity.3” These
observations suggest that MS may improve insulin resistance in Fructose-fed rats partly
by inhibiting the AGE-RAGE-induced inflammatory reactions in the adipose tissues via
suppression of NADPH oxidase-mediated ROS generation. Since the AGE-RAGE-
evoked ROS generation further enhances RAGE expression and AGE accumulation,
which could make a vicious cycle,?*3® MS may break the crosstalk between AGE-
RAGE axis and ROS in the adipose tissues.

To further elucidate the underlying mechanism by which MS ameliorated adipose
tissue remodeling and dysregulation of adipocytokines in Fructose-fed rats, we
performed in vitro-experiments using differentiated adipocytes. As was the case for
animal experiments, we found here that MS significantly reduced the NADPH oxidase-

driven ROS generation, MCP-1 and RAGE gene expression, and lipid accumulation as
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detected by Oil Red O staining and simultaneously restored the decreased adiponectin
mRNA levels in AGE-exposed adipocytes. We have previously found that anti-oxidants,
such as NAC and pigment epithelium-derived factor, not only aﬁenﬁate the AGE-
induced insulin resistance in adipocytes, but also inhibit the effects of AGEs on MCP-1
and adiponectin gene expression in vitro.'>3% Moreover, in this study, NAC mimicked
the effects of MS on ROS generation, RAGE gene expression, and lipid accumulation in
AGE-exposed adipocytes. Engagement of RAGE with CML has been shown to
stimulate adipocyte inflammatory reactions, RAGE gene expression, and lipid
accumulation in association with the suppression of adiponectin gene expression.3® In
addition, obesity is associated with the activation of CML-RAGE axis in human adipose
tissues, especially visceral adipose tissues.® These findings further support the concept
that MS may improve insulin resistance in Fructose-fed rats by blocking the harmful
effects of AGEs on adipocytes via inhibition of ROS generation.

In the present study, we also investigated the effects of glycolipids and DGDG on
cultured adipocytes because DGDG is one of the most abundant glycolipids in algal
membranes and that it has anti-inflammatory properties in vitro.4%4! Since spontaneous
food intake was ca. 22 g/day in MS-treated rats and that MS contained DGDG (ca.

19mg/g MS), if we assume that absorption rate of DGDG is 1 % and that DGDG is
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distributed to extracellular fluid volume, plasma concentration of DGDG is estimated to
be 0.01 pg/ml. So, we chose the concentration of 0.001~10 pg/ml DGDG in the present
experiments. Both MSGL and DGDG mimicked the effects of MS on ROS generation
and lipid accumulation in AGE-exposed adipocytes, thus suggesting the pathological
role of DGDG in insulin resistance.

In accordance with the results in cell culture and animal model experiments, we
found here that compared with placebo, oral intake of MS for 12 weeks significantly
decreased diastolic BP, fasting plasma glucose, fasting insulin, and HOMA-IR values in
apparent healthy overweight subjects. Since no MS-related side effects were observed in
this study, oral intake of MS may be a novel therapeutic strategy for preventing obesity-

related insulin resistance in humans.

Limitations

The present study had several limitations. First, in this study, we could not identify
active components in MS that might be responsible to the observed effects. DGDG
mimicked the effects of MS on adipocytes; it inhibited the AGE-induced ROS
generation and lipid accumulation in adipocytes. However, the exact absorption rates of

DGDG and effects of DGDG on insulin resistance in animals and humans remain

23



1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
14156
1416

unclear. Moreover, since the effects of CV that contained 10 mg DGDG/g dry powder
on ROS generation and lipid accumulation in adipocytes were modest and not
significant, other components than DGDG may contribute to the beneficial effects of
MS. Second, we did not know the reason why MS at 3.2 pg/ml did not inhibit basal or
AGE-induced RAGE gene expression in adipocytes, while lower concentration did (Fig.
3C). Alternative techniques, such as western blot analysis and enzyme-linked
immunosorbent assay would be helpful to confirm the present findings. Third, in this
study, rats were kept in metabolic cages individually for measurement of metabolites in
the urine. It could cause depression that affected the present findings. Fourth, orally
ingested glycolipids, such as DGDG are rapidly hydrolyzed in the rat small intestine,
and released galactosylglycerols are fermented by the colon microbiota to generate
short-chain fatty acids,* which could also be derived via fermentation of indigestible
fibers contained in MS.*} Therefore, we did not know how much microbiota-generated
short-chain fatty acids may contribute to the improvement of insulin resistance in both
Fructose-fed rats and overweight subjects. Fifth, in the present study, we examined the
effects of MS on insulin resistance in Fructose-fed rats, especially focusing on adipose
tissues because the elevations in ALT and ratio of liver weight to body weight in

Fructose-fed rats were not ameliorated by the treatment with MS. However, it would be
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interesting to examine the effects of MS on insulin sensitivity in the liver and skeletal
muscles of Fructose-fed rats. Moreover, due to ethical considerations, it was not
possible to obtain adipose tissue samples from study participants. So, we could not
assess the effects of MS on AGE-RAGE-oxidative stress system in the
adipose tissues of overweight subjects. Although we, along with others, have previously
shown the active involvement of AGE-RAGE axis in insulin resistance in animal
models and humans,43%-32 further basic study using RAGE-aptamer that could block the
interaction of AGEs and RAGE is need to clarify the pathological role of AGE-RAGE
axis in metabolic derangements.***> Finally, the study population consists of apparent
healthy overweight Japanese adults. Accordingly, our clinical results might not be

generalized to other populations.

Conclusions

Our present findings suggest that MS may improve insulin resistance by blocking the

AGE-RAGE-oxidative stress axis in the adipose tissues.
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FIGURE LEGENDS

Fig. 1. Effects of MS on AGEs, RAGE, and oxidative stress in the adipose tissues of
Fructose-fed rats and serum and urinary excretion levels of 8-iso-PGF2a. A-E: Adipose
tissue AGEs (A), CML (B), RAGE (C), NADPH oxidase activity (D), and 8-OHdG
levels (E). Each upper panel shows representative immunostainings of AGEs (A), CML
(B), RAGE (C), and 8-OHdG (D) in the adipose tissues. Each lower panel shows the
quantitative data. F: Serum 8-iso-PGF2a levels. G: Urinary excretion levels of 8-iso-
PGF2a.

Fig. 2. Effects of MS on inflammatory reactions, MCP-1 and adiponectin expression in
the adipose tissues and adipocyte size of Fructose-fed rats. A-D: Each upper panel
shows representative immunostainings of F4/80 (A), CCR7 (B), MCP-1 (C), and
adiponectin (D) in the adipose tissues. Each lower panel shows the quantitative data. E:
Adipose tissue sections were stained with hematoxylin and eosin, and adipocyte size
was analyzed. Left panels show representative hematoxylin and eosin-stained adipose
tissue sections. Right panel shows the quantitative data.

Fig. 3. Effect of MS or NAC on NADPH oxidase activity (A), ROS generation (B, G,
and J), RAGE (C and H), MCP-1 (D), and adiponectin mRNA levels (E), and
intracytoplasmic lipid accumulation (F, I, and K) in AGE-exposed differentiated
adipocytes. Differentiated adipocytes were treated with 100 pg/ml AGE-BSA or non-
glycated BSA for 1 hours (A, B, D, G, and J), 2 hours (E), 8 hours (C and H), and 2
days (F, I, and K) in the presence or absence of the indicated concentrations of MS, CV,
or NAC. C-E, and H: Total RNAs were transcribed and amplified by real-time PCR.
Data were normalized by the intensity of 18S ribosomal RNA (C and H, 28S ribosomal
RNA (D)-, or TATA-box binding protein mRNA (E)-derived signals and then related to
the values obtained with non-glycated BSA alone. F, I, and K: Intracytoplasmic lipid
accumulation was quantitated by staining the cells with Oil Red O. Each upper panel
shows representative Oil Red O stainings. Each lower panel shows the quantitative data.
* and **, p<0.05 and p<0.01 compared with AGEs alone, respectively. # and ##,
p<0.05 and p<0.01 compared with non-glycated BSA alone, respectively. (A) N=6 per
group. (B) N=18 per group. (C) N=8 per group. (D, E, and H) N=4 per group. (F, I, and
K) N=15 per group. (G) N=27 per group. (J) N=18 per group.
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Fig.4. Effect of MSGL or DGDG on ROS generation (A and C) and intracytoplasmic
lipid accumulation (B and D) in AGE-exposed differentiated adipocytes. Differentiated
adipocytes were treated with 100 pg/ml AGE-BSA or non-glycated BSA for 1 hours (A),
4 hours (C), and 2 days (B and D) in the presence or absence of the indicated
concentrations of MSGL or DGDG. A and C: ROS generation was measured with
carboxy-H,DFFDA. B and D: Intracytoplasmic lipid accumulation was quantitated by
staining the cells with Oil Red O. Each upper panel shows representative Oil Red O
stainings. Each lower panel shows the quantitative data. * and **, p<0.05 and p<0.01
compared with AGEs alone, respectively. #, p<0.05 compared with non-glycated BSA
alone. (A) N=27 per group. (B) N=10 per group. (C) N=18 per group. (D) N=10 per
group.

Fig. 5. A clinical study outline.
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Table 1. Characteristics of animals

Control rats

Fructose-fed

Fructose- and

rats MS-fed rats
Number 6 6 8
Body weight (g) 433 + 11 422 + 37 413 + 33
Heart rate (beats/min) 408 + 43 394 + 35 386 £ 48
Mean blood pressure (mmHg) 109 £ 10 107 £ 10 101+£7
Systolic blood pressure (mmHg) 127+ 9 124+ 12 119+ 10
Diastolic blood pressure (mmHg) 100+ 11 98 + 10 93+5
Fasting blood glucose (mg/dl) 157 + 44 163 + 17 150 £ 12
Random blood glucose (mg/dl) 131 £ 22 173 £ 21* 136 + 18+
Fast insulin (WU/ml) 27.1+7.5  40.8 £ 23.7%* 23.5 + 16.67t
HOMA-IR 10.4+£4.0 16.7 £ 11.1** 8.5+ 5.7t
HbA1c (%) 49+0.1 49+0.1 5.0+£0.1
Total cholesterol (mg/dl) 58+ 4 69 + 16 66 + 15
LDL-cholesterol (mg/dl) 20+ 6 20+ 4 19+4
Triglycerides (mg/dl) 102 + 60 140 £ 36 127 + 62
HDL-cholesterol (mg/dl) 44 + 8 52+ 13 49 + 12
Non-esterified fatty acid (mEq/1)  0.64 + 0.08 0.63 £ 0.09 0.67 £ 0.07
Blood urea nitrogen (mg/dl) 145+ 1.7 142 +2.0 134+ 1.5
Creatinine (mg/dl) 04£0.1 0.3+0.1 0.3+0.1
Aspartate aminotransferase (U/1) 60 + 14 60 + 18 68 + 12
Alanine aminotransferase (U/1) 21+4 30 £ 6** 32+ 14
Kidney weight/body weight (%) 0.45 + 0.07 0.49 + 0.03 0.50 £ 0.05
Heart weight/body weight (%) 0.45 + 0.08 0.48 + 0.06 0.50 + 0.04
Liver weight/body weight (%) 2.63+0.22 3.36+ 0.29** 3.07 £ 0.23
AGEs (U/ml) 6.G+3.1 89+4.1 7.8+2.8

Data are presented as mean * standard deviation.

* and **, p<0.05 and p<0.01 compared with Control rats, respectively. 11, p<0.01
compared with Fructose-fed rats. HOMA-IR; homeostasis model assessment of insulin
resistance, HbAlc; glycated hemoglobin, LDL-cholesterol; low-density lipoprotein
cholesterol, HDL-cholesterol; high-density lipoprotein cholesterol, AGEs; advanced
glycation end products.
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Table 2. Clinical variables of active and placebo treatment groups

Active treatment group Placebo treatment group
(n=15; 7 males and 8 females) (n=14; 8 males and 6 females)
baseline post-treatment baseline post-treatment

Age (years old) 45.7 +9.6 46.0 + 9.6 46.1+106 464106
Body weight (kg) 75.8 £ 9.5 76.2+ 9.5 73.5+ 7.6 74.4+7.9
Body mass index (kg/m?) 271+13 273+1.8 27.1+1.3 27.4+1.7
Waist circumference (an) 90.5+7.7 89.0+ 7.7 86.9+ 3.6 87.4+4.7
Systolic blood pressure (mmHg) 121 +18 116 + 11* 121+9 119+ 11
Diastolic blood pressure (mmHg) 754 +11.7 69.7 + B.6**8 73.2+9.8 74.1+9.7
Heart rate (bpm) 77.5 £15.6 71.8+11.1* 76.9+12.9 75.2+12.7
Fasting plasma glucose (mg/dl) 94.5+12.3 89.3 + 8.9% 92.6 £ 6.6 92.4 + 8.5
Fasting insulin (nU/ml) 728+3.44 591+ 2.41%8 7.71 + 4.67 8.01 +3.27
HOMA-IR 1.75 + 1.07 1.32 +0.65* 1.79 +1.12 1.85+ 0.82
HbA1c (%) 55+0.4 55+04 55+04 5.6+0.4
Total cholesterol (mg/dl) 203 + 21 199 + 22 199 + 21 206 + 26
LDL-cholesterol (img/dl) 127 £ 26 124 + 24 135+ 24 138 + 30
Triglycerides (mg/dl) 109.9+31.1  110.3+375 91.4 + 43.2 99.9 + 43.4
HDL-cholesterol (mg/dl) 63.9 +10.31 60.4 + 8.4* 55.6+11.4 54.4+10.1
Blood urea nitrogen (mg/dl) 11.7+3.1 11.9+2.8 12.7+34 14.0 + 3.5
Creatinine (mg/dl) 0.73+0.13 0.71 £ 0.13* 0.77£023 0.76+0.24
Uric acid (mg/dl) 58+ 1.0 5.6+ 0.8 6.0+ 1.2 59+1.2
Aspartate aminotransferase (U/1) 20.7 £ 6.0 22.5+11.0 19.9+ 4.1 21.6+5.2
Alanine aminotransferase (U/) 18.8 + 6.7 22.8+134 21.1+12.1 25.0 + 11.0*
y-glutamyl transferase (U/) 29.1+13.5 37.4 + 40.4 30.1 £+ 20.3 29.7 +15.9

Values are shown as means + standard deviation. Treatment groups were compared at baseline by using an
unpaired t-test. Paired t-test was performed for comparisons between baseline and post-treatment. Post-
treatment clinical variables were adjusted for baseline values, and statistical differences between the two
groups were analyzed by one-way analysis of covariance. * and **, p<0.05 and p<0.01 compared with
baseline values of active treatment group, respectively. #, p<0.05 compared with baseline values of placebo
treatment group. T and §, p<0.05 compared with baseline and post-treatment values of placebo group,
respectively. HOMA-IR; homeostasis model assessment of insulin resistance, HbA1c; glycated hemoglobin,

LDL-cholesterol; low-density lipoprotein cholesterol, HDL-cholesterol; high-density lipoprotein cholesterol.
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