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A B S T R A C T   

Background: To perform accurate laparoscopic hepatectomy (LH) without injury, novel intraoperative systems of 
computer-assisted surgery (CAS) for LH are expected. Automated surgical workflow identification is a key 
component for developing CAS systems. This study aimed to develop a deep-learning model for automated 
surgical step identification in LH. 
Materials and methods: We constructed a dataset comprising 40 cases of pure LH videos; 30 and 10 cases were 
used for the training and testing datasets, respectively. Each video was divided into 30 frames per second as static 
images. LH was divided into nine surgical steps (Steps 0–8), and each frame was annotated as being within one of 
these steps in the training set. After extracorporeal actions (Step 0) were excluded from the video, two deep- 
learning models of automated surgical step identification for 8-step and 6-step models were developed using a 
convolutional neural network (Models 1 & 2). Each frame in the testing dataset was classified using the con
structed model performed in real-time. 
Results: Above 8 million frames were annotated for surgical step identification from the pure LH videos. The 
overall accuracy of Model 1 was 0.891, which was increased to 0.947 in Model 2. Median and average accuracy 
for each case in Model 2 was 0.927 (range, 0.884–0.997) and 0.937 ± 0.04 (standardized difference), respec
tively. Real-time automated surgical step identification was performed at 21 frames per second. 
Conclusions: We developed a highly accurate deep-learning model for surgical step identification in pure LH. Our 
model could be applied to intraoperative systems of CAS.   

1. Introduction 

Laparoscopic hepatectomy (LH) was first reported in 1991 [1], with 
the first international consensus conference on LH held in 2008 in 
Louisville [2]. Since then, the number of LHs performed has significantly 
increased. More than 5000 LHs were performed in 2017 for both benign 
and malignant indications in Japan [3]. Regarding potential benefits [4, 
5], LH reduces intraoperative blood loss, transfusion rate, postoperative 
morbidity, length of hospital stay [6], and postoperative pain [7]. 
Additional benefits include parietal preservation, better cosmetic 

outcomes, earlier resumption of physical activity [8], and facilitation of 
redo surgery [9]. Despite its advantages and increasing usage, LH is 
offered only at referral centers, with technical difficulties and the ne
cessities for experience in both hepatobiliary and complex laparoscopic 
surgery hampering its widespread adoption [10]. Although preoperative 
computer-assisted surgical simulation, such as computed tomography 
volumetry, has been widely used in daily clinical practice, development 
of the novel intraoperative systems in computer-assisted surgery (CAS), 
which help surgeons to perform safer and more efficient procedures like 
LH, are expected [11]. 

Abbreviations: AI, artificial intelligence; CAS, computer-assisted surgery; CNN, convolutional neural network; HMM, Hidden Markov model; LH, Laparoscopic 
hepatectomy; NCCHE, National Cancer Center Hospital East. 
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In recent years, automated surgical workflow identification using 
artificial intelligence (AI) has been performed in minimally invasive 
surgery [12–15]. Real-time automated surgical step identification, in 
which AI automatically identifies and judges the operative fields and 
surgical procedures as one of several pre-defined data in real-time, is a 
fundamental component for developing intraoperative CAS systems 
[16]. This real-time automated step identification could be applied to 
CAS-based clinical decision support systems that may provide real-time 
useful information to surgeons in relation to the actual step and course 
of the operation, such as information regarding target lesions that are 
approaching or adjacent to anatomical landmarks that may be fatal if 
injured [17]. We expect that intraoperative CAS systems may help to 
standardize and spread safer procedures in LH. To our knowledge, 
studies describing automated surgical step identification focused on LH 
are lacking. Therefore, this study aimed to develop a deep-learning 
model for automated surgical step identification in LH. 

2. Methods 

2.1. Creation of the dataset 

We constructed a dataset containing 40 cases of pure LH partial 
resection procedures, all of which were performed by four surgeons at 
the National Cancer Center Hospital East (NCCHE) in Kashiwa, Japan, 
between July 2018 and December 2019. All procedures were recorded 
using a VISERA ELITE system (Olympus Inc., Tokyo, Japan) with a 10- 
mm camera or a KTH 102 endoscope (Karl Stroz Inc., Tuttlingen, Ger
many) with a 10-mm camera and a 30◦ angle. During pre-processing, all 
videos were converted into the same codec (MPEG-4 AVC/H.264) and 
display resolution (vertical resolution, 720 pixels). The video data were 
divided into frame units of every 1/30 of a second (30 frames per sec
ond) as static images. 

All 40 pure LH videos were separated into predetermined surgical 
workflow patterns, referred to as ‘‘surgical steps.’’ Each video was 
manually divided into nine surgical steps (Step 0–8), based on the 
method of task analysis: Step 0 comprised extracorporeal actions; Step 1 
comprised port insertion; Step 2 comprised lysis of adhesions; Step 3 
comprised identification of the target lesion using laparoscopic ultra
sound and marking the resection line; Step 4 comprised encircling of the 
hepatoduodenal ligaments and hepatic inflow-occlusion; Step 5 
comprised mobilization of the liver; Step 6 comprised liver transection; 
Step 7 comprised specimen extraction and closing of the surgical inci
sion; and Step 8 comprised other actions (e.g., waiting for next hepatic 
inflow occlusion after releasing the clamp) (Fig. 1). Each step, including 
its start and end points, was clearly defined based on anatomical posi
tion and surgical procedure. Although the order of the surgical steps 
differed depending on the case, the step in which the corresponding 
surgical procedure was best applied was annotated for each occasion. 

2.2. Automated surgical step identification 

For surgical step identification, 30 and 10 videos were randomly 
assigned to a training dataset (which was what the model is trained on) 
and test dataset (which was used to see how well that model assesses 
priorly unseen data), respectively [18]. A deep-learning approach was 
used to classify individual video frames as belonging to one of a 
pre-learned set of steps. Automated identification of eight steps (Steps 
1–8) was performed after Step 0 (extracorporeal actions) frames were 
excluded from the video (Model 1). The Xception model [19] was used 
as the convolutional neural network (CNN) architecture and was 
pre-trained using the ImageNet dataset [20]. Algorithm performance 
was assessed using holdout validation. Moreover, Steps 1 (port inser
tion), 7 (specimen extraction and closing of the surgical incision), and 8 
(other actions) frames were compiled as “Step IP (Invalid Procedure)” to 
efficiently identify the surgical step and automated identification of six 
steps (Steps IP and 2–6) in another model (Model 2). Step IP (invalid 

procedure) included procedures that do not directly display progress 
during the operation as the video frames during this step had similar 
visual features. 

2.3. Evaluation metrics 

The evaluation metrics for the model were precision, recall, F1 score 
(which were used as the metrics for each step), and overall accuracy 
(which was used for the integrated steps). The F1 score of each class and 
overall accuracy of all classes were considered the most significant 
variable in the evaluation of the deep-learning model for classification 
[20]. The calculation formula for each metric is shown below, where TP 
represents true positive classifications, FP represents false positive 
classifications, TN represents true negative classifications, and FN rep
resents false-negative classifications. 

Precision=
TP

TP + FP  

Recall=
TP

TP + FN  

F1score= 2･
Precision･Recall

Precision + Recall  

Overall accuracy=
TP + TN

TP + FP + TN + FN  

2.4. Real-time automated surgical step identification 

Since it takes more time for AI to identify the surgical steps than to 
capture frames, multi-threading was applied to realize real-time step 
identification. While one thread of AI captured a frame from a camera 
device, another thread identified the step using the deep neural network 
model. When the step identification was completed, the inferred step 
was updated and displayed in the current frame [12]. The model was 
trained with a single graphics processing unit with 16 GB of VRAM 
(Quadro® GP100; Nvidia Inc. Santa Clara, CA, USA), as was the surgical 
step being tested. 

2.5. Ethical declarations 

The study protocol was approved by the institutional review board of 
the NCCHE (registration no. 2020-315). All patients provided written 
informed consent for this project. This project was conducted in 
compliance with the Declaration of Helsinki, Ethical Principles for 
Medical Research Involving Human Subjects (as amended in Fortaleza, 
October 2013) [21]. 

3. Results 

3.1. The dataset 

Table 1 summarizes the baseline patient information for the 
collected pure LH videos (n = 40). The median patient age was 69.5 
years (range, 39–84 years); 22 (55%) patients were male, and their 
median body mass index was 23.3 kg/m2 (range, 14.4–32.5 kg/m2). All 
patients had Child–Pugh class A lesions. The most common pathological 
diagnosis of the tumor was colorectal liver metastases (62.5%). In 35 
cases (87.5%), the number of resected tumors was one. The median 
maximum tumor diameter was 15 mm (range, 5–45 mm). The most 
common tumor location was segment 6 (40.0%). The median operation 
time was 122 min (range, 38–216 min), and the median blood loss was 
36 mL (range, 0–200 mL). 

There were 8,119,595 frames in the dataset comprising the 40 pure 
LH cases, and each frame was labeled with its corresponding surgical 
step. The duration for each surgical step is shown in Fig. 2. The duration 
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Fig. 1. Definition of the eight surgical steps annotated in the notarized laparoscopic hepatectomy (LH) videos, with representative images and descriptions of their 
start and end points. 
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for Step 6 (liver transection) was the longest and varied most widely 
between each patient (median, 46 min; range, 10–101 min), whereas 
Step 2 (lysis of adhesion) occupied the shortest duration (median, 2 min; 
range, 0–16 min). All eight tagged steps occurred only in 5 of the 40 
cases; Step 2 (lysis of adhesion), Step 4 (encircling of the hep
atoduodenal ligaments and hepatic inflow occlusion), and Step 5 
(mobilization of the liver) were not performed in 22, 2, and 22 cases, 
respectively. 

3.2. Automated surgical step identification 

The step identification results of both models are compared to the 
manually annotated data in a representative case in Fig. 3A. In Model 1, 
Steps 3 (identification of the target lesion using laparoscopic ultrasound 
and marking the resection line), 4 (encircling of the hepatoduodenal 
ligaments and hepatic inflow-occlusion), and 6 (liver transection) were 
almost correctly identified, which were in contrast to Step 8 (other ac
tions). In Model 2, Steps 1 (port insertion), 7 (specimen extraction and 
closing of the surgical incision), and 8 (other actions) were compiled as 
“Step IP (invalid procedure)”. Consequently, Step IP (invalid procedure) 
was almost correctly identified. The longest period that was not 
correctly identified was the short period of Step IP during the last part of 
LH, which was misidentified as Step 6 (liver transection) (Fig. 3B). 
During that period, no hemorrhage and bile leakage on the liver tran
section plane was confirmed using the same suction instrument as that 
for liver transection, during which Step IP was misidentified as Step 6 by 
AI. 

The results of the evaluation metrics in the test dataset are shown in 
Table 2. The overall accuracy of Model 1 was 0.891, which was 
increased to 0.947 in Model 2. The median accuracy for each case was 
0.879 (range, 0.842–0.947) in Model 1, and 0.927 (range, 0.884–0.997) 
in Model 2. The average accuracy for each case was 0.890 ± 0.04 
(standardized difference; SD) in Model 1 and 0.937 ± 0.04 (SD) in 
Model 2. The deep-learning model included automated surgical step 
identification in real-time at 21 frames per second (range, 16–22) on 
average. The video for automated surgical step identification is shown in 
Video 1. 

Supplementary video related to this article can be found at htt 
ps://doi.org/10.1016/j.ijsu.2022.106856 

4. Discussion 

This study described the use of AI with deep learning for identifying 
surgical steps in 40 pure LH cases, based on manually annotated data. 
The overall accuracy of Model 1 was 0.891, which was increased to 
0.947 in Model 2. The SD of accuracy according to each case was only 
0.04 in both Models 1 and 2, which indicated that the accuracy of our 
model was highly consistent across different cases. Real-time automated 
surgical step identification was achieved at 21 frames per second. Our 

Table 1 
Baseline characteristics (n = 40).  

Variable Result 

Age, years 69.5 (39–84)a 

Sex, n (%) 
Male 22 (55%) 
Female 18 (45%) 

Body mass index, kg/m2 23.3 (14.4–32.5)a 

Pathological diagnosis, n (%) 
Colorectal liver metastases 25 (62.5%) 
Hepatocellular carcinoma 12 (30%) 
Intrahepatic cholangiocellular carcinoma 3 (7.5%) 

Number of tumors, n (%) 
1 35 (87.5) 
2 5 (12.5) 

Tumor location, n (%) 
Segment 4 3 (7.5) 
Segment 5 7 (17.5) 
Segment 6 16 (40) 
Segment 7 2 (5) 
Segment 8 12 (30) 

Maximum tumor diameter, mm 15 (5–45)a 

Child-Pugh Score A, n (%) 40 (100) 
Indocyaninde green R15, % 10.7 (5–68.8)a 

History of hepatitis, n (%) 
B 3(7.5) 
C 4(10) 
Alcoholic 1(2.5) 
Operation time, min 123 (38–216)a 

Blood loss, mL 18 (0–200)a 

Experience of operating surgeons, years 16 (6–21)a  

a Median (range). 

Fig. 2. Box and whisker plot showing duration among the different surgical steps. The boundary of the box closest to zero indicates the 25th percentile, the black 
cross mark within the box marks the median, and the boundary of the box farthest from zero indicates the 75th percentile. Whiskers above and below the box indicate 
the 10th and 90th percentiles. Points above and below the whiskers indicate outliers outside the 10th and 90th percentiles. 
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results showed that real-time automated surgical step identification with 
a high frame rate is feasible and that our deep-learning model facilitated 
automated video indexing. To the best of our knowledge, this is the first 
study in which a deep-learning based classification approach was 
applied to a video dataset of LH cases. 

Recently, a deep-learning model of automated surgical step identi
fication has been reported in several procedures, such as laparoscopic 
sigmoidectomy (LS), cholecystectomy, and gastrectomy [12–15]. The 
reported data on overall accuracy ranged from 0.728 to 0.919. In 
contrast, our model for LH achieved a higher overall accuracy (0.891 in 

Fig. 3. A. Comparison of the step identification results and a surgeon-notarized video for a representative case from the LH dataset in a color-coded ribbon illus
tration. The top ribbon shows the surgeon-notarized video, wherein data which was labeled manually. The bottom ribbon indicates the duration of the predicted step. 
A short period for Step IP (*) in the surgeon-notarized video was misidentified as Step 6 by AI, in which a representative scene was captured as Fig. 3B. 
B. The scene which Step IP was misidentified as Step 6 by AI. During this period, no hemorrhage and bile leakage within the liver transection plane was codnfirmed 
using the same suction instrument as that for liver transection. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 2 
Precision, recall, and F1 scores for automated surgical step identification.  

Step Model 1 Model 2 

Precision Recall F1 score Precision Recall F1 score  

1 Port insertion 0.819 0.745 0.780 Not applicable  
2 Lysis of adhesion 0.905 0.959 0.931 0.905 0.959 0.931  
3 Identification of the target lesion using laparoscopic ultrasound and marking of the resection line 0.961 0.919 0.939 0.961 0.919 0.939  
4 Encircling of the hepatoduodenal ligaments and hepatic inflow occlusion 0.899 0.934 0.916 0.899 0.934 0.916  
5 Mobilization of the liver 0.947 0.937 0.942 0.947 0.937 0.942  
6 Liver transection 0.960 0.974 0.967 0.960 0.974 0.967  
7 Specimen extraction and closing of the surgical incision 0.828 0.726 0.774 Not applicable  
8 Other actions 0.564 0.596 0.579 Not applicable 
IP: Invalid Procedure Not applicable 0.899 0.866 0.882 

Overall accuracy 0.891 0.937 
Accuracy of each case, median (range) 0.879 (0.842–0.947) 0.927 (0.884–0.997) 
average ± standard deviation 0.890 ± 0.04 0.937 ± 0.04  
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Model 1 and 0.947 in Model 2). We consider that there were mainly two 
reasons for the unexceptionally high accuracy of our model. First, we 
achieved high accuracy by compiling three steps into “Step IP (Invalid 
Procedure)” in Model 2. Step IP is composed of Steps 1 (port insertion), 7 
(specimen extraction and closing of the surgical incision), and 8 (other 
actions). These steps included procedures that do not directly visually 
show progress during the operation. Additionally, the video frames in 
these steps have similar visual features, and it is difficult for the model to 
distinguish them accurately. Therefore, by compiling these three steps 
into a “Step IP”, we succeeded to develop not only a highly accurate 
deep-learning model but also a model that effectively identified the 
essential surgical parts during LH. Second, the high accuracy of our 
model may reflect the mechanism of the utilized computer vision tech
niques to identify surgical steps in laparoscopic videos. A deep-learning 
model automatically learns the visual features of every frame from the 
training dataset. The model then identifies the surgical step in the test 
dataset based on these identified visual features [22]. In LH, the visual 
features of the targeted structures differ clearly (e.g., liver capsule, liver 
parenchyma, intra-corporeal fat in the abdomen), as do the specific in
struments used during each surgical step (e.g., intraoperative ultrasonic 
probe in Step 3, tourniquet tube for the hepatic inflow occlusion in Step 
4). These characteristic features of liver anatomy and surgical in
struments during LH may help AI to distinguish surgical steps from each 
other. On the contrary, it may be difficult for AI to correctly recognize 
each surgical step during LS because the colon is naturally difficult to 
distinguish from the rectum and no characteristic surgical instruments 
are used during each surgical step. Therefore, we consider that LH may 
be more suitable for CAS systems to identify surgical steps than LS and 
other operations. 

As for our future perspective, our deep-learning model could serve as 
a basis for CAS to provide real-time information during LH in the 
operative field. For example, our model provides real-time updates 
regarding procedure progress, helps guide the use of surgical in
struments for assistants and surgical teams, and estimates the remaining 
duration of surgery, which will improve the efficiency of operating room 
usage [12–15]. Second, our model could be applied to the hospital 
system to create informative and focused education material for surgical 
trainees. Our model automatically understands surgical images, and it 
could be utilized to help identify specific segments of an operation to 
help make video reviews more efficient. Third, our model has already 
identified liver transection, and this model will be improved in the 
future to automatically identify bleeding within the parenchymal 
dissection plane, which may eventually contribute to increased patient 
safety during LH. We believe that our model of automatic surgical step 
identification using AI will contribute to developing intraoperative CAS 
systems in the future that effectively arrange operating room logistics 
and help surgeons perform LH with more ease. 

The main limitation of the present study was the similarity of the 
videos within the dataset. Videos were procured from a single institu
tion; therefore, the complexity of the data was limited. Training a deep- 
learning model with a limited dataset can lead to over-fitting and 
consequent loss of generalizability [23]. During LH, various surgical 
procedures, including major hepatectomy were performed, and different 
characteristic surgical instruments, such as intraoperative laparoscopic 
ultrasonography, ultrasonic dissection, and laparoscopic coagulating 
shears released by various companies, were used by different in
stitutions [24]. This variety of procedures and instruments may decrease 
the accuracy of our model if applied to videos from other institutions. 
However, we considered that our model would be able to obtain more 
accurate and generalizable networks by increasing the number and 
variation of LH videos. We are now constructing a large dataset con
taining 300 LH videos obtained from high-volume endoscopic centers in 
Japan as a project of the Japan Agency for Medical Research and 
Development [25]. We consider that this new model, which is developed 
from a large dataset would resolve some above-stated limitations. Even 
if LH from other institutions vary regarding procedures and surgical 

instruments, the visual features of the specific instruments used during 
each surgical step also differ clearly. By using training data, including 
videos from other institutions, this new model could accurately identify 
surgical steps in various LH cases. A further limitation was that the 
performance of our model was still insufficient for clinical applications. 
EndoBRAIN® (Olympus Inc., Tokyo, Japan), an automated identifica
tion system of colorectal neoplasms using AI in endoscopy, had obtained 
regulatory approval of medical device and has been released to the 
market in Japan in 2019 [26]. The first report of that system was pub
lished in 2018 and the accuracy of automated identification was 0.765 
[27]. Afterward, the system had been trained by increasing both the 
number and variation of cases, utilizing multiple medical institutions. 
Only then did the accuracy of the system improve [28]. Therefore, by 
increasing the number and variation of data, we consider that our model 
will achieve higher accuracy. 

Another limitation of the present study was annotation granularity. 
Our annotation schema, with its nine labels, only captured big-picture 
steps of LH, which does not account for the smaller sub-components. 
“Step 6 (liver transection),” for example, could be split into “transec
tion of the hepatic capsule,” “transection of liver parenchyma,” and 
“exposure, clipping, and dissection of vessels or ducts.” A more granular 
annotation structure would create a foundation for advanced warning 
prior to adverse events (like bleeding from a vessel) and provide 
meaningful intra-operative findings to guide post-operative risk pre
diction [29]. However, increased annotation granularity presents diffi
culties for current deep-learning technology because it leads to shorter 
temporal segments. Although less training data and training optimiza
tion for overall accuracy make it difficult for AI to identify short dura
tion steps, newer approaches of deep-learning, such as the Hidden 
Markov model (HMM) approach, have been tried to resolve this problem 
[30]. With improved model design and the new annotation standard, AI 
can perform granular step identification, and this would provide 
well-detailed information to develop further valuable CAS systems for 
LH. 

5. Conclusion 

We developed a highly accurate deep-learning model for surgical 
step identification in pure laparoscopic hepatectomy. Our model could 
be applied to various systems of computer-assisted surgery. 

Provenance and peer review 

Not commissioned, externally peer-reviewed. 

Disclosure information 

All authors have no financial conflicts of interest to disclose con
cerning this research. 

Role of the funding source 

This research was supported by the Japan Agency for Medical 
Research and Development (grant number JP 20he2102001h0002). 

Author contributions 

Study conception and design: Sasaki, Ito, Takeshita. 
Acquisition of data: Sasaki, Kobayashi, Gotohda. 
Analysis and interpretation of data: Sasaki, Matsuzaki, Takeshita. 
Drafting of manuscript: Sasaki. 
Critical revision: Ito, Kitaguchi, Kudo, Hasegawa, Sugimoto, Mitsu

naga, Gotohda. 

K. Sasaki et al.                                                                                                                                                                                                                                  



International Journal of Surgery 105 (2022) 106856

7

Acknowledgments 

None. 

References 

[1] H. Reich, F. McGlynn, J. DeCaprio, R. Budin, Laparoscopic excision of benign liver 
lesions, Obstet. Gynecol. 78 (1991) 956–958. 

[2] J.F. Buell, D. Cherqui, D.A. Geller, et al., The international position on laparoscopic 
liver surgery: the Louisville Statement, Ann. Surg. 250 (2009) (2008) 825–830, 
https://doi.org/10.1097/sla.0b013e3181b3b2d8. 

[3] D. Ban, M. Tanabe, H. Kumamaru, et al., Safe dissemination of laparoscopic liver 
resection in 27,146 cases between 2011 and 2017 from the national clinical 
database of Japan, Ann. Surg. 274 (2021) 1043–1050, https://doi.org/10.1097/ 
SLA.0000000000003799. 

[4] G. Wakabayashi, D. Cherqui, D.A. Geller, et al., Recommendations for laparoscopic 
liver resection: a report from the second international consensus conference held in 
Morioka, Ann. Surg. 261 (2015) 619–629, https://doi.org/10.1097/ 
SLA.0000000000001184. 

[5] M. Kasai, F. Cipriani, B. Gayet, et al., Laparoscopic versus open major hepatectomy: 
a systematic review and meta-analysis of individual patient data, Surgery 163 
(2018) 985–995, https://doi.org/10.1016/j.surg.2018.01.020. 

[6] H. Tranchart, G. Di Giuro, P. Lainas, et al., Laparoscopic resection for 
hepatocellular carcinoma: a matched-pair comparative study, Surg. Endosc. 24 
(2010) 1170–1176, https://doi.org/10.1007/s00464-009-0745-3. 

[7] I. Dagher, G. Di Giuro, J. Dubrez, et al., Laparoscopic versus open right 
hepatectomy: a comparative study, Am. J. Surg. 198 (2009) 173–177, https://doi. 
org/10.1016/j.amjsurg.2008.09.015. 

[8] M. Gagner, T. Rogula, D. Selzer, Laparoscopic liver resection: benefits and 
controversies, Surg. Clin. 84 (2004) 451–462, https://doi.org/10.1016/j. 
suc.2003.11.002. 

[9] G. Belli, L. Cioffi, C. Fantini, et al., Laparoscopic redo surgery for recurrent 
hepatocellular carcinoma in cirrhotic patients: feasibility, safety, and results, Surg. 
Endosc. 23 (2009) 1807–1811, https://doi.org/10.1007/s00464-009-0344-3. 

[10] A. Radtke, G.C. Sotiropoulos, E.P. Molmenti, et al., Computer-assisted surgery 
planning for complex liver resections: when is it helpful? A single-center 
experience over an 8-year period, Ann. Surg. 252 (2010) 876–883, https://doi.org/ 
10.1097/SLA.0b013e3181fdd012. 

[11] A. Zygomalas, I. Kehagias, Up-to-Date Intraoperative Computer Assisted Solutions 
for Liver Surgery, World J Gastrointest Surg Baishideng Publishing Group Inc., 
2019, pp. 1–10. 

[12] A.P. Twinanda, G. Yengera, D. Mutter, et al., RSDNet: learning to predict remaining 
surgery duration from laparoscopic videos without manual annotations, IEEE 
Trans. Med. Imag. 38 (2019) 1069–1078, https://doi.org/10.1109/ 
TMI.2018.2878055. →18-21. 

[13] D.A. Hashimoto, G. Rosman, E.R. Witkowski, et al., Computer vision analysis of 
intraoperative video: automated recognition of operative steps in laparoscopic 
sleeve gastrectomy, Ann. Surg. 270 (2019) 414–421, https://doi.org/10.1097/ 
SLA.0000000000003460. 

[14] D. Kitaguchi, N. Takeshita, H. Matsuzaki, et al., Real-time automatic surgical phase 
recognition in laparoscopic sigmoidectomy using the convolutional neural 

network-based deep learning approach, Surg. Endosc. 34 (2020) 4924–4931, 
https://doi.org/10.1007/s00464-019-07281-0. 

[15] D. Kitaguchi, N. Takeshita, H. Matsuzaki, et al., Automated laparoscopic colorectal 
surgery workflow recognition using artificial intelligence: experimental research, 
Int. J. Surg. 79 (2020) 88–94, https://doi.org/10.1016/j.ijsu.2020.05.015. 

[16] F. Lalys, P. Jannin, Surgical process modelling: a review, Int. J. Comput. Assist. 
Radiol. Surg. 9 (2014) 495–511, https://doi.org/10.1007/s11548-013-0940-5. 

[17] C.R. Garrow BSc, K.F. Kowalewski, L. Li BSc, et al., Machine learning for surgical 
phase recognition: a Systematic Review, 2021– 273, Ann. Surg. April 273 (4) 
(2021) 684–693, https://doi.org/10.1097/SLA.0000000000004425, 684–693. 

[18] G.I. Sammut C Webb (Ed.), Hold Out Evaluation, Encyclopedia of Machine 
Learning and Data Mining, Springer, 2017, 624–624. 

[19] C.F. Xception, Deep learning with depthwise separable convolutions, CVPR (2017) 
1800–1807, 2017. 

[20] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep 
convolutional neural networks, Commun. ACM 60 (2017) 84–90, https://doi.org/ 
10.1145/3065386. https://dl.acm.org/doi/10.1145/3065386. 

[21] World Medical Association, World Medical Association declaration of Helsinki: 
ethical principles for medical research involving human subjects, JAMA 310 
(2013) 2191–2194, https://doi.org/10.1001/jama.2013.281053. 

[22] A.P. Twinanda, S. Shehata, D. Mutter, et al., EndoNet: a deep architecture for 
recognition tasks on laparoscopic videos, IEEE Trans. Med. Imag. 36 (2017) 86–97, 
https://doi.org/10.1109/TMI.2016.2593957. 

[23] H. Liu, Z.H. Mo, H. Yang, et al., Automatic facial recognition of Williams-Beuren 
syndrome based on deep convolutional neural networks, Front. Pediatr. 9 (2021), 
648255, https://doi.org/10.3389/fped.2021.648255. 

[24] H. Kaneko, Y. Otsuka, M. Tsuchiya, et al., Application of devices for safe 
laparoscopic hepatectomy, HPB 10 (2008) 219–224, https://doi.org/10.1080/ 
13651820802166831. 

[25] Japan Agency for Medical Development, (AMED), Title of Research, Development 
of a transversal infrastructure for building a database of endoscopic surgery, Grant 
Number JP 20he2102001h0002, https://amedfind.amed.go.jp/amed/search/tas 
k_search_details.html. 

[26] PRESS RELEASE EndoBRAIN®-EYE, AI-equipped colorectal endoscopy diagnosis 
support software Part 2. Acquisition of Approval under Pharmaceutical and 
Medical Device Act (PMD Act) EndoBRAIN®-EYE, software to support diagnosis in 
colorectal endoscopy using artificial intelligence (AI). https://www.cybernet.jp/e 
nglish/documents/pdf/news/press/2020/20200129.pdf, 2020. 

[27] M. Misawa, S. ei Kudo, Y. Mori, et al., Artificial intelligence-assisted polyp 
detection for colonoscopy: initial experience, Gastroenterology 154 (2018) 
2027–2029, e3. 

[28] S. ei Kudo, M. Misawa, Y. Mori, et al., Artificial intelligence-assisted system 
improves endoscopic identification of colorectal neoplasms, Clin. Gastroenterol. 
Hepatol. 18 (2020) 1874–1881, e2. 

[29] T.M. Ward, D.A. Hashimoto, Y. Ban, et al., Automated operative phase 
identification in peroral endoscopic myotomy, Surg. Endosc. 35 (2021) 
4008–4015, https://doi.org/10.1007/s00464-020-07833-9. 

[30] Y. Jin, Q. Dou, H. Chen, et al., SV-RCNet: workflow recognition from surgical 
videos using recurrent convolutional network, IEEE Trans. Med. Imag. 37 (2018) 
1114–1126, https://doi.org/10.1109/TMI.2017.2787657. 

K. Sasaki et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S1743-9191(22)00633-1/sref1
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref1
https://doi.org/10.1097/sla.0b013e3181b3b2d8
https://doi.org/10.1097/SLA.0000000000003799
https://doi.org/10.1097/SLA.0000000000003799
https://doi.org/10.1097/SLA.0000000000001184
https://doi.org/10.1097/SLA.0000000000001184
https://doi.org/10.1016/j.surg.2018.01.020
https://doi.org/10.1007/s00464-009-0745-3
https://doi.org/10.1016/j.amjsurg.2008.09.015
https://doi.org/10.1016/j.amjsurg.2008.09.015
https://doi.org/10.1016/j.suc.2003.11.002
https://doi.org/10.1016/j.suc.2003.11.002
https://doi.org/10.1007/s00464-009-0344-3
https://doi.org/10.1097/SLA.0b013e3181fdd012
https://doi.org/10.1097/SLA.0b013e3181fdd012
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref11
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref11
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref11
https://doi.org/10.1109/TMI.2018.2878055
https://doi.org/10.1109/TMI.2018.2878055
https://doi.org/10.1097/SLA.0000000000003460
https://doi.org/10.1097/SLA.0000000000003460
https://doi.org/10.1007/s00464-019-07281-0
https://doi.org/10.1016/j.ijsu.2020.05.015
https://doi.org/10.1007/s11548-013-0940-5
https://doi.org/10.1097/SLA.0000000000004425
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref18
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref18
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref19
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref19
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://dl.acm.org/doi/10.1145/3065386
https://doi.org/10.1001/jama.2013.281053
https://doi.org/10.1109/TMI.2016.2593957
https://doi.org/10.3389/fped.2021.648255
https://doi.org/10.1080/13651820802166831
https://doi.org/10.1080/13651820802166831
https://amedfind.amed.go.jp/amed/search/task_search_details.html
https://amedfind.amed.go.jp/amed/search/task_search_details.html
https://www.cybernet.jp/english/documents/pdf/news/press/2020/20200129.pdf
https://www.cybernet.jp/english/documents/pdf/news/press/2020/20200129.pdf
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref27
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref27
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref27
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref28
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref28
http://refhub.elsevier.com/S1743-9191(22)00633-1/sref28
https://doi.org/10.1007/s00464-020-07833-9
https://doi.org/10.1109/TMI.2017.2787657

	Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy: Experimental research
	1 Introduction
	2 Methods
	2.1 Creation of the dataset
	2.2 Automated surgical step identification
	2.3 Evaluation metrics
	2.4 Real-time automated surgical step identification
	2.5 Ethical declarations

	3 Results
	3.1 The dataset
	3.2 Automated surgical step identification

	4 Discussion
	5 Conclusion
	Provenance and peer review
	Disclosure information
	Role of the funding source
	Author contributions
	Acknowledgments
	References


