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Abstract

COVID-19 has a range of complications, from no symptoms to severe pneumonia. It can

also affect multiple organs including the nervous system. COVID-19 affects the brain, lead-

ing to neurological symptoms such as delirium. Delirium, a sudden change in conscious-

ness, can increase the risk of death and prolong the hospital stay. However, research on

delirium prediction in patients with COVID-19 is insufficient. This study aimed to identify new

risk factors that could predict the onset of delirium in patients with COVID-19 using machine

learning (ML) applied to nursing records. This retrospective cohort study used natural lan-

guage processing and ML to develop a model for classifying the nursing records of patients

with delirium. We extracted the features of each word from the model and grouped similar

words. To evaluate the usefulness of word groups in predicting the occurrence of delirium in

patients with COVID-19, we analyzed the temporal changes in the frequency of occurrence

of these word groups before and after the onset of delirium. Moreover, the sensitivity, speci-

ficity, and odds ratios were calculated. We identified (1) elimination-related behaviors and

conditions and (2) abnormal patient behavior and conditions as risk factors for delirium.

Group 1 had the highest sensitivity (0.603), whereas group 2 had the highest specificity and

odds ratio (0.938 and 6.903, respectively). These results suggest that these parameters

may be useful in predicting delirium in these patients. The risk factors for COVID-19-associ-

ated delirium identified in this study were more specific but less sensitive than the ICDSC

(Intensive Care Delirium Screening Checklist) and CAM-ICU (Confusion Assessment

Method for the Intensive Care Unit). However, they are superior to the ICDSC and CAM-

ICU because they can predict delirium without medical staff and at no cost.
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Introduction

The novel coronavirus disease (COVID-19) was declared a pandemic in 2019 by the World

Health Organization (WHO) [1]. In Japan, more than 30,000,000 cases of COVID-19 have

been reported since the first confirmed case on January 16, 2020 [2, 3]. This disease causes

interstitial pneumonia and severe acute respiratory infections with high infection rates. The

typical clinical symptoms of COVID-19 include fever, cough, diarrhea, and fatigue. However,

atypical presentations include extrapulmonary involvement, such as gastrointestinal symp-

toms, multi-organ failure, and nervous system involvement. Moreover, there has been growing

awareness of the neuropsychiatric manifestations of COVID-19 [4]; coronavirus affects the

brain, leading to neurological symptoms such as delirium.

Delirium (sometimes referred to as an “acute confusional state”) is a common clinical

syndrome characterized by disturbed consciousness, cognitive function, or perception,

with an acute onset and fluctuating course [5]. Assessment of delirium, the most frequent

clinical manifestation of acute brain dysfunction, is particularly important in patients with

COVID-19 [6]. A review summarizing the incidence of delirium in patients with COVID-

19 in 2021 showed that 29–40% of older adults developed delirium [7]. A recent case series

from Wuhan, China, reported that 36% of patients with COVID-19 admitted to the hospi-

tal experienced neurological conditions, including altered mental states and ischemic

strokes [4]. A retrospective study in Saudi Arabia found that one-quarter of patients with

COVID-19 developed “confusion,” and almost 9% experienced seizures [8, 9]. Further-

more, COVID-19-associated delirium has been correlated with unfavorable outcomes,

including prolonged hospitalization and elevated mortality rates [10, 11]. Several investiga-

tions have reported that delirium is prevalent in patients with COVID-19 and is associated

with poor clinical outcomes in Japan [12, 13]. Consequently, the management of patients

to avoid the onset of delirium is critical, with an escalating need to prognosticate its

manifestation.

Delirium prevention is an important issue in COVID-19 infection; however, prevention

strategies are nonpharmacological and resource- and personnel-intensive [14]. Current meth-

ods for identifying hospitalized patients at an increased risk of delirium require nurse-admin-

istered questionnaires with moderate accuracy [15]. However, it is not always possible to have

sufficient medical personnel to implement such methods. In particular, during the early stages

of the COVID-19 pandemic, the physical and human costs of the infection prevention mea-

sures were significant. Therefore, a method that does not interfere with daily operations is

needed to identify patients at risk of delirium [16].

Recent significant advances have been made in machine learning (ML) technology, which

has been effective in predicting the onset of various diseases [17–20]. Previous studies have

used ML to predict the onset of mental disorders, such as depression and delirium [21–23].

These studies on delirium include predictions using ML with structured data, such as age,

sex, and weight [16, 24–26], as well as predictions using unstructured text data provided by

medical professionals [27–30]. However, a systematic review of predictive models for delir-

ium found that none have been adequately and systematically evaluated [31]. Hence, we

aimed to identify previously unknown risk factors for delirium that could be useful in pre-

dicting its onset. To achieve this, we used natural language processing (NLP) and ML tech-

niques to analyze nursing records because they contain detailed information regarding

patients’ daily conditions.
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Materials and methods

Study design

The study period was from January 2021 to May 2021. This was a single-center, retrospective,

observational study. Patients admitted to Juntendo University Hospital during the study

period with COVID-19 registered as their disease condition were included. When this study

was conducted, Juntendo Hospital (Tokyo, Japan) was an acute care hospital with 1,051 beds.

The analysis of medical records was conducted from August 2021 to March 2023.

Data source

In this study, patients with COVID-19 infection were diagnosed using the “Guidelines for the

Clinical Management of COVID-19” [32]. Diagnoses were primarily confirmed using poly-

merase chain reaction (PCR), point-of-care (POCT), and antigen testing. Patient data were

extracted from information provided by the Juntendo University Information Center. Any

information that could identify individual participants was discarded or anonymized prior to

the analysis. The extracted information included patient ID, date of birth, sex, medical history,

free-text data, and occupation of the individual who described the text data. Notably, nursing

records were identified as those recorded by nurses. Patients who (1) did not receive a con-

firmed diagnosis of infection via a PCR test and (2) were hospitalized for less than 48 h were

excluded. In total, 273 patients were included in the analysis.

Nursing records were written multiple times daily by different nurses. The records may be

written in SOAP format or as free text. The SOAP format comprises subjective, objective,

assessment, and planning information. Specifically, these included the patient’s condition,

nurses’ observations, nurses’ review and assessment of vital signs, treatment, messages from

the patient, and other comments from the nurse. Some nursing records only documented

administrative information, such as prescriptions, and did not include the patient’s condition.

This analysis aimed to uncover hidden risk factors through text mining, focusing on patients’

subjective information and nurses’ subjective comments. Therefore, nursing records that con-

tained subjective information were included in the analysis. Fig 1 illustrates this process.

Fig 1. Flow diagram for the records included in this study.

https://doi.org/10.1371/journal.pone.0296760.g001
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Model development

Natural language texts cannot be used directly by ML algorithms. Therefore, they must be vec-

torized for processing using ML algorithms. The following are required to perform ML: (1)

unification of half- and full-width characters, (2) breaking sentences down to the word level,

and (3) vectorization. The text used in this study was written in Japanese. The Japanese lan-

guage does not have word boundaries. Therefore, it was necessary to break down sentences at

the word level. For this task, a Japanese morphological analyzer (MeCab [33]) was used to con-

vert sentences into a standard form of segmented text. This text was then vectorized using the

term frequency-inverse document frequency vectorizer from scikit-learn [34]. Through this

process, text data written in Japanese were converted into a form that could be processed using

ML algorithms. Fig 1 illustrates this process.

ML models were developed to analyze the nursing records of patients with delirium.

Logistic regression (LR) [35], support vector machine (SVM) [36], decision tree (DT), and

random forest (RF) were used as models. This was implemented using the scikit-learn pack-

age in Python [34]. The ML models employed in this study—LR, SVM, DT, and RF—have

demonstrated high performance in identifying risk factors for delirium onset in previous

studies [37–39]. The primary rationale for selecting these models is their interpretability in

influencing the individual factors in the outcome. The objective of the present study was to

identify key factors influencing delirium using the trained ML models; therefore, models

that enable a clear interpretation of the relationships between factors and the disease are

desirable. While some complex ML models, such as neural networks, are known for their

high performance, they often pose challenges in interpreting the influence of individual fac-

tors. Consequently, the LR, SVM, DT, and RF models were chosen for their capability to

quantitatively express the magnitude of the effect of each factor, making these models partic-

ularly useful for identifying risk factors for delirium. To optimize the performance of the ML

model, we adjusted the parameters and evaluated the results. The model was then evaluated

using the four-fold cross-validation method.

Identifying risk factors

The features of each word were extracted from the trained ML model. A total of 50 1-gram

words were extracted in the order of feature size. The Japanese language has the following ten

parts-of-speech categories: verbs, adjectives, adjectival verbs, nouns, adverbs, participles, con-

junctions, impressive verbs, auxiliary verbs, and particles. We defined function words, which

include participles, conjunctions, impressive verbs, auxiliary verbs, and particles, as “non-sig-

nificant words.” Non-significant words and words that appeared fewer than 100 times in the

entire text were excluded. Moreover, 1-gram words with similar meanings were categorized

into three groups. Subsequently, 2-gram and 3-gram words (in Japanese) were similarly classi-

fied into these three groups. This step was based on the opinions of the psychiatrists engaged

in the clinical work.

Evaluating risk factors using odds ratios

We identified the risk factors in the preceding steps. Next, we assessed the relationship

between these risk factors and the onset of delirium by calculating odds ratios. We aimed to

determine whether the words used by each of the three groups could predict delirium. The

predictability of the words in each group was evaluated by determining the sensitivity, specific-

ity, and odds ratio of words appearing (1) at least once a day or (2) at least twice a day regard-

ing a particular patient.
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Measurement of study variables

The major outcome was delirium incidence. We tracked the presence or absence of delirium

and date of onset. Delirium is often not registered in electronic medical records, even if there

is an actual onset [40, 41]. Therefore, clinicians at the Juntendo Hospital Mental Clinic identi-

fied the onset date of delirium in patients. Experienced psychiatrists diagnosed delirium

according to the DSM-5 criteria, based on patients’ medical history, physical examinations,

and clinical test results, as well as physical and mental status examinations.

Statistical analyses

Patient characteristics are described using the mean (SD) for continuous variables and per-

centages for dichotomous and categorical variables for all participants, patients with delirium,

and patients without delirium. All analyses were performed using Python (version 3.10.5) and

scikit-learn (version 1.1.3) [34].

Ethics approval

As this was a retrospective study that dealt with existing medical records, the requirement for

informed consent was waived. Information about the study design was posted on the Juntendo

University Hospital website, and all candidates were guaranteed the opportunity to refuse to

participate in the study. This study adhered to the “Ethical Guidelines for Medical Research

for Humans” and the Declaration of Helsinki. The research protocol was approved by the Jun-

tendo University School of Medicine Ethics Committee (approval no. H21-0102).

Results

Study population

The analysis included 273 patients, 21 (7.7%) of whom had delirium. The average age of all

patients was 59.8 (SD, 19.1) years, and 61.1% were men. The average age of the patients with

delirium was 73.5 (SD, 16.6) years, whereas that of those without delirium was 58.6 (SD, 18.9)

years. Moreover, the length of hospital stay was 34.1 (SD, 27.7) and 12.6 (SD, 9.3) days for

patients with and without delirium, respectively. The patient characteristics are presented in

Table 1.

Construction of the machine learning model

The model was developed using the nursing records of patients with delirium before the onset

of delirium and those of patients without delirium as supervisory data. Specifically, the records

of patients with delirium up to 7 days before admission were analyzed along with those of

patients without delirium within 7 days after admission. The resulting nursing records totaled

5,085. Of these, 362 (7.1%) were nursing records of patients with delirium.

Next, ML models and the N-gram type (1–3-gram) were conditionally trained. The average

area under the receiver operating characteristic curve (AUC) was obtained using a four-fold

cross-validation method. Using LR, SVM, DT, and RF, the AUC was 0.478–0.788, 0.740–

0.804, 0.580–0.647, and 0.758–0.771, respectively. In LR and SVM, the AUC tended to be

smaller for L1 regularization. Moreover, no significant differences were observed in the AUC

between the 1-gram, 2-gram, and 3-gram models. To identify many possible factor candidates,

we decided to use a 3-gram model. According to a systematic review comparing predictive

models for the development of delirium in older adults [31], the AUC of the predictive models

ranged from 0.52–0.94. The results of the present study were within this range. The results are

shown in Fig 2.
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Table 1. Demographic characteristics of the patients and nurse records.

Overall Delirium No delirium

N 273 21 252

Male sex 167 13 154

Age (decade, n)

<10 2 0 2

10 s 7 0 7

20 s 17 1 16

30 s 18 0 18

40 s 32 0 32

50 s 44 5 39

60 s 51 1 50

70 s 59 5 54

80 s 39 6 33

90 s 4 3 1

Past medical history (%)

Dementia 5 3 (14%) 2 (1%)

Epilepsy 14 1 (5%) 13 (5%)

Depression 10 1 (5%) 8 (3%)

Stroke 21 5 (24%) 16 (6%)

Insomnia 32 4 (20%) 28 (11%)

Hospital day, mean (SD) 34.1 (27.7) 12.6 (9.3)

Nurse record that includes subjective data to be analyzed, n 5085 362 4723

https://doi.org/10.1371/journal.pone.0296760.t001

Fig 2. Graphs showing the construction of the machine learning model. LR, logistic regression model; SVC, support vector classifier; DT, decision

tree; RF, random forest.

https://doi.org/10.1371/journal.pone.0296760.g002
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Identifying risk factors

As described in the Methods section, we identified candidates for risk factors, and factors with

similar meanings were consolidated into three distinct groups based on the opinions of the

psychiatrists engaged in clinical work: (1) elimination-related behaviors and conditions, (2)

abnormal patient behavior and conditions, and (3) subjective expression of pain or severity. A

list of words is presented in Fig 3, and the word groups are shown in Fig 4.

Prediction of disease onset using the risk factors

We identified the risk factors in the preceding steps. Next, we evaluated whether these risk fac-

tors could predict delirium onset. For each patient, the number of times words in each group

appeared per day was tabulated. For each group, we graphed (1) the frequency with which the

word appeared at least once and (2) the frequency with which the word appeared at least twice.

The sensitivity, specificity, and odds ratio for each group are shown in Fig 5.

Group 1 had the highest sensitivity (0.603). Group 2 had the highest specificity and odds

ratio (0.938 and 6.903, respectively). However, group 3 had a low odds ratio (1.985). These

results suggest that groups 1 and 2 may be useful in predicting delirium, but group 3 may not.

Fig 3. Fifty 1-gram words with high features were extracted from the machine-learning model.

https://doi.org/10.1371/journal.pone.0296760.g003

Fig 4. Grouping of risk factors (excluding non-significant words).

https://doi.org/10.1371/journal.pone.0296760.g004
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Discussion

Prior findings

Our objective was to identify unrecognized factors useful for predicting the onset of delirium

using ML in the nursing records of patients with COVID-19. With this analysis, we identified

(1) elimination-related behaviors and conditions and (2) abnormal patient behavior and con-

ditions as predictors of delirium. In contrast, (3) subjective expression of pain or severity was

not a predictor.

However, the identified factors were less sensitive than assessment methods often used in

daily practice. Representative assessment methods for delirium include the Intensive Care

Delirium Screening Checklist (ICDSC), Confusion Assessment Method for the Intensive

Care Unit (CAM-ICU), Delirium Rating Scale-Revised-98 (DRS-R-98), and Memorial Delir-

ium Assessment Scale (MDAS) [42, 43]. In particular, CAM-ICU and ICDSC are often used

[44]; CAM-ICU has a sensitivity of 0.771–0.826 and specificity of 0.948–0.968, and ICDSC

has a sensitivity of 0.653–0.815 and specificity of 0.767–0.864 [45]. Group 1 demonstrated

the highest sensitivity (0.603) but low specificity (0.690). In contrast, group 2 demonstrated

the highest specificity (0.938) but low sensitivity (0.310). Compared to using previous meth-

ods, prediction using the risk factors identified in this study may not be immediately

effective.

However, these assessment methods require additional work for medical staff, and our pre-

dictors can be objectively and automatically collected without additional work. Under pan-

demic conditions, the ability to predict the onset of delirium without additional work and

direct contact is desirable, as it can reduce the use of physical resources for infection preven-

tion and risk [16]. In clinical practice, a more detailed evaluation, such as ICDSC, should be

performed when these risk factors are identified in patients. This would effectively enable

Fig 5. Graphs showing the sensitivity, specificity, and odds ratio for predicting disease onset using risk factors. The vertical axis represents the

percentage of patients, and the horizontal axis represents 7 days before and after the day of delirium onset (day 0). The blue dotted line indicates the

percentage of patients with delirium 1–7 days before its onset. The red dotted line indicates the frequency observed in patients without delirium.

https://doi.org/10.1371/journal.pone.0296760.g005
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assessment of the risk of delirium, and necessary management to prevent onset can be per-

formed in advance.

Predictors identified in this study

Group 1, comprising elimination-related behaviors and conditions, included words such as

“toilet,” “urination,” and “constipation.” Some studies suggest that elimination is associated

with delirium. A lack of physiological control may exacerbate confusion or be considered a

symptom. Among the risk assessments for delirium, the NEECHAM Confusion Scale includes

an item on “urinary function” [46]. Furthermore, aspects of elimination, such as diaper use,

urinary incontinence, and urinary retention, are useful for delirium risk assessment [42, 47,

48]. According to one of the authors, a psychiatric clinician, patients with mental instability

occasionally complain of indefinite urinary symptoms. More detailed data collection should be

performed in the next step, such as when and how many patients visit the toilet, as it may

enable the early prediction of delirium onset.

Group 2, comprising abnormal patients’ behavior and conditions, included words such as

“sensor” and “nurse call.” The use of bed sensors or bed fences is a risk factor for delirium

development [47, 49], restricting a patient’s body movements [49]. Immobility is thought to be

a risk factor, so it encourages medical staff to perform active range-of-motion exercises [5, 42,

48, 50]. To the best of our knowledge, no prior research has been conducted on the relation-

ship between nurse calls and delirium. However, one study statistically summarized the fre-

quency and content of nurse calls, with calls related to the “toilet” being the most common

[51]. Given that elimination-related complaints were considered potential risk factors in this

study, an increase in nurse calls may reflect these concerns.

Group 3, comprising subjective expression of pain or severity, included words such as

“pain” and “choking.” Patients with severe COVID-19 have been reported to develop delirium

[4]. Moreover, patient conditions, such as “shortness of breath,” “fever,” “insomnia,” and “cat-

atonic state,” are related to delirium [42, 48, 52–55]. However, in the present study, the rela-

tionship between the symptoms and the onset of delirium was weak. One reason for the

difference from previous studies may be that the expressions “pain” and “choking” alone do

not capture the severity of the symptoms. Objective indices are appropriate for evaluating dis-

ease severity. For example, “shortness of breath” should be evaluated using SpO2 [5, 15]. How-

ever, whether scaling subjective symptoms is useful in predicting disease onset remains to be

examined.

Change in the frequency of occurrence of predictors before and after

delirium onset

We assessed the relationship between these risk factors and the onset of delirium by calculating

odds ratios. Fig 5 compares the frequency of occurrence of these factors before and after delir-

ium onset. According to this graph, the frequency of occurrence of words in Groups 1 and 2

was higher before the onset of delirium than in patients without delirium. This demonstrates

that the risk factors in Groups 1 and 2 were related to the onset of delirium. However, after the

onset of delirium, the frequency decreased and approached that of patients without delirium.

We hypothesized that one of the reasons for the decrease after onset may be that therapeutic

interventions improved the severity of delirium. Another possible reason for the decrease after

onset could be that the therapeutic intervention led to changes in patients’ complaints. For

example, if a urinary catheter is inserted as a therapeutic intervention, the frequency of

requests to go to the toilet is expected to decrease. Since our study could not examine this

aspect, we cannot draw a definitive conclusion.
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Strengths and limitations

Our study had several strengths. First, we employed a text mining technique to analyze free-

text nursing records. This approach allowed us to successfully identify hidden risk factors such

as (1) changes in elimination-related behaviors and conditions and (2) increased frequency of

nurse calls and sensor alerts, which were not represented in a structured format in electronic

health records. Therefore, the strength of this study lies in its ability to discover findings that

cannot be detected by analyzing structured data.

Furthermore, our results can ease the workload of medical staff. Traditional methods, such

as ICDSC and CAM, require additional work for patient assessment. For instance, CAM,

which is a representative assessment method, requires approximately 5 min [56]. This may

overwhelm the staff’s daily work if the number of patients is high. In contrast, the risk factors

identified in this study can be collected without additional work. For instance, by developing

sensors that detect nurse calls or when a patient leaves bed, data can be collected without

human intervention. If the collected data meet predefined criteria, alerts can be triggered,

thereby identifying patients at high risk of developing delirium before its onset. Early identifi-

cation facilitates timely intervention, potentially preventing the worsening of outcomes due to

delirium. In terms of clinical applications, we envision a product concept of a compact sensor

that can fulfill all the necessary functions and be easily attached to the bedside. Such devices

can be readily introduced into clinical settings. Moreover, such a device would not increase

the chances of contact with patients. During pandemics, factors such as a shortage of human

resources make executing standard delirium management practices in routine clinical settings

challenging [16, 57]. Another major challenge in the early stages of the COVID-19 pandemic

was the risk of spreading infection through contact. We believe that this study offers a solution

to this challenge.

However, our study had some limitations. The data used in this study were obtained from a

single hospital over a short period. Therefore, our results may not be generalizable. In addition,

we used nursing records written in Japanese. Therefore, similar results cannot be obtained

from nursing records written in other languages. External validation is required to ensure the

generalizability of our results.

Future direction

In this study, we investigated the incidence of delirium. However, NLP and ML have been

effective for diseases other than delirium [22, 58]. Additionally, text mining for psychiatric dis-

orders is also effective in assessing depression [21, 58]. Our method may be used to identify

predictors of the onset of other psychiatric diseases.

LR, SVM, DT, and RF were used as ML methods. This was done to emphasize the ease of

interpreting the results. In general, neural networks and deep learning are effective in improv-

ing ML performance [59, 60]. Moreover, Bidirectional Encoder Representations from Trans-

formers have demonstrated high performance in NLP tasks [18, 61]. Ensemble learning, which

combines multiple ML methods, is also effective [62, 63]. Furthermore, by adding age, sex,

severity of illness, and progress in daily laboratory findings in future research, better prediction

performance can be expected.

The data used in this study were limited. An important step in the future would involve

applying the predictive keywords and NLP algorithms identified in this study to data from

many other hospitals over a long study period. Obtaining a larger dataset from multiple hospi-

tals and sites over a longer study period may help overcome overfitting and bias.
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Conclusions

This study successfully employed NLP and ML techniques to analyze nursing records, leading

to the identification of specific risk factors for the onset of delirium in hospitalized patients.

Our analysis revealed two key predictors: (1) changes in elimination-related behaviors and

conditions and (2) increased frequency of nurse calls and sensor alerts. These findings are sig-

nificant as they can provide a novel, automated approach to delirium risk assessment without

imposing additional workload on medical staff. The identified risk factors not only enhance

our understanding of early delirium indicators but also offer a practical tool for early interven-

tion, potentially improving patient outcomes in clinical settings.
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