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Abstract
Background: Hypoxic microenvironment is prominent in advanced esophageal 
squamous cell carcinoma (ESCC). However, it is unclear whether ESCC becomes 
hypoxic when it remains in the mucosal layer or as it invades the submucosal layer. 
We aimed to investigate whether intramucosal (Tis- T1a) or submucosal invasive 
(T1b) ESCC becomes hypoxic using endoscopic submucosal dissection samples.
Methods: We evaluated the expression of hypoxia markers including hypoxia 
inducible factor 1α (HIF- 1α), carbonic anhydrase IX (CAIX), and glucose trans-
porter 1 (GLUT1) by H- score and vessel density by microvessel count (MVC) and 
microvessel density (MVD) for CD31 and α- smooth muscle actin (α- SMA) with 
immunohistochemical staining (n = 109). Further, we quantified oxygen satura-
tion (StO2) with oxygen saturation endoscopic imaging (OXEI) (n = 16) and com-
pared them to non- neoplasia controls, Tis- T1a, and T1b.
Results: In Tis- T1a, cccIX (13.0 vs. 0.290, p < 0.001) and GLUT1 (199 vs. 37.6, 
p < 0.001) were significantly increased. Similarly, median MVC (22.7/mm2 
vs. 14.2/mm2, p < 0.001) and MVD (0.991% vs. 0.478%, p < 0.001) were mark-
edly augmented. Additionally, in T1b, the mean expression of HIF- 1α (16.0 
vs. 4.95, p < 0.001), CAIX (15.7 vs. 0.290, p < 0.001), and GLUT1 (177 vs. 37.6, 
p < 0.001) were significantly heightened, and median MVC (24.8/mm2 vs. 14.2/
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1  |  INTRODUCTION

In advanced solid cancers, it is known that the abnormal 
growth of cancer cells and incomplete angiogenesis can 
lead to tumor hypoxia.1– 3 In the absence of oxygen, hy-
poxia inducible factor 1α (HIF- 1α), which is the hypoxic 
response factor, remains stable, activating the expression 
of hypoxia response genes, such as carbonic anhydrase IX 
(CAIX),4 glucose transporter 1 (GLUT1),5 vascular endo-
thelial growth factor (VEGF),3,6,7 erythropoietin (EPO),3 
transforming growth factor beta 3 (TGF- β3),3 and so on. 
This leads to further angiogenesis, tumor invasion, and 
metastasis, resulting in a poor prognosis.2– 5,8 As a result 
of angiogenesis, the density and number of blood vessels 
increase in the tumor.3,9,10

Esophageal squamous cell carcinoma (ESCC) is one 
of the tumors that becomes hypoxic as it progresses, 
which leads to angiogenesis. It has a poor prognosis 
and high mortality rate.9– 19 In non- neoplastic esopha-
geal tissues, the expression of hypoxia markers such as 
HIF- 1α, CA9, and GLUT1 is rare,20– 22 but in ESCC, this 
expression increases as it invades deeper, and the high 
expression of hypoxia markers is associated with a poor 
prognosis.10,12– 17

In superficial esophageal squamous cell carcinoma 
(SESCC), it has been reported that the expression of hy-
poxia markers is higher than that in non- neoplasia20– 22 and 
lower than that in advanced ESCC.10,12– 17 Furthermore, 
oxygen saturation endoscopic imaging (OXEI, FUJIFILM, 
Tokyo) collaboratively developed by our group, for visual-
izing the oxygen status of digestive tract lesions as a color 
map in real time23– 25 has previously revealed that the oxy-
gen saturation (StO2) in esophageal neoplasia was signifi-
cantly lower than that in non- neoplasia.23 This finding is 
consistent with previous reports relating to the expression 
of hypoxia markers.10,12– 17,20– 22

Recent literature suggests that ESCC is hypoxic at an 
early stage. However, there have been no reports com-
paring the oxygen status of non- neoplasia, high- grade 
dysplasia (pTis), intramucosal carcinoma (pT1a), and sub-
mucosal carcinoma (pT1b). Further, it is also unknown 

whether ESCC is hypoxic when it remains in the mucosal 
layer or whether it becomes hypoxic as it invades the sub-
mucosal layer.

The aim of this study was therefore to investigate 
whether ESCC becomes hypoxic in pTis- T1a or pT1b by 
comparing the expression of hypoxia markers, vessel den-
sity, and the StO2 with OXEI in non- neoplasia, pTis- T1a, 
and pT1b, respectively.

2  |  MATERIALS AND METHODS

2.1 | Patients

Patients with SESCC who underwent endoscopic sub-
mucosal dissection (ESD) at the National Cancer Center 
Hospital East, with histologically diagnosed negative hor-
izontal and vertical margins, and with the pathological 
staging of pTis or pT1a between March 2019 and October 
2019 and with the pathological staging of pT1b between 
September 2015 and October 2019, met the inclusion cri-
teria of this study. Patients who had a history of chemo-
therapy and/or radiotherapy for esophageal and/or head 
and neck cancers were excluded from the study.

2.2 | Histopathologic examinations

Routine pathologic diagnoses of ESD specimens were 
performed as follows: Each ESD specimen was fixed in 
10% neutral buffered formalin and cut into 2 mm slices, 
vertical to the long axis, and then processed for paraffin 
embedding and sectioning. Hematoxylin and eosin stain-
ing (H&E) was performed, and then the specimens were 
examined using light microscopy by two pathologists. 
The depth of invasion, lateral and deep margins, degree 
of differentiation, and lymphatic and vascular invasion 
were reported based on the Japanese Classification of 
Esophageal Cancer, and the T classification was catego-
rized according to the guidelines of the 8th edition of the 
TNM classification.26,27

mm2, p < 0.001) and MVD (1.51% vs. 0.478%, p < 0.001) were markedly higher. 
Furthermore, OXEI revealed that median StO2 was significantly lower in T1b 
than in non- neoplasia (54% vs. 61.5%, p = 0.00131) and tended to be lower in T1b 
than in Tis- T1a (54% vs. 62%, p = 0.0606).
Conclusion: These results suggest that ESCC becomes hypoxic even at an early 
stage, and is especially prominent in T1b.

K E Y W O R D S
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2.3 | Immunohistochemical staining

Immunohistochemical staining was performed on the 
VENTANA BenchMark ULTRA automated slide stainer 
(VENTANA, Roche). The primary antibodies used in this 
study are listed in Table S1.

2.4 | Evaluation of the expression of HIF- 
1α, CAIX, and GLUT1

The SESCC and the adjacent non- neoplastic esophageal epi-
thelium, in one target section with the most widespread can-
cer cells in pTis- T1a or with the deepest depth of invasion by 
cancer cells in pT1b, together with the expression of HIF- 1α, 
CAIX, and GLUT1 were evaluated with immunohistochemi-
cal staining, and H- score assignment was performed by two 
pathologists.28– 30 The staining intensity of HIF- 1α based on 
nuclear staining and that of CAIX and GLUT1 based on mem-
brane staining was scored using the following classification 
system: [0], negative staining; [1+], weak staining; [2+], mod-
erate staining; [3+], strong staining (Figure 1). Thus, the H- 
score was calculated as follows: 1 × (the percentage of cancer 
cells staining [1+]) + 2 × (the percentage of cancer cells stain-
ing [2+]) + 3 × (the percentage of cancer cells staining [3+]).

2.5 | Evaluation of microvessel count 
(MVC) and microvessel density (MVD)

All slides were automatically scanned using the virtual slide 
scanner NanoZoomer (Hamamatsu Photonics) at 40× mag-
nification after data anonymization and setting of image ac-
quisition parameters. The total area of SESCC and adjacent 
non- neoplastic esophageal epithelium in one target section 
was selected, and the total number and area of blood vessels 
in SESCC and adjacent non- neoplastic esophageal epithe-
lium, which were stained for both CD31 and α- smooth mus-
cle actin (α- SMA), were measured. Further, the microvessel 
count (MVC) and microvessel density (MVD) were calcu-
lated by dividing the total number and area of blood vessels 
per total area of SESCC or adjacent non- neoplastic esopha-
geal epithelium, respectively.31,32 Representative photo-
micrographs of double immunohistochemical staining for 
CD31 and α- SMA in SESCC are shown in Figure S1A,B.

2.6 | Oxygen saturation (StO2) 
measurement using OXEI

As we previous reported, the mechanism for imaging the ox-
ygen saturation (StO2) with OXEI is to detect the difference 
in absorption coefficient between oxidized and reduced 
hemoglobin on the mucosal surface using two laser light 

wavelengths (445 and 473 nm) and process the obtained im-
ages and transform it as StO2 color maps.23 The both images 
of ordinary white- light imaging and OXEI imaging with 
StO2 color map can be synchronously captured and filed.

The entire SESCC in pTis- T1a or the deepest part of 
SESCC in pT1b, which was captured based on the patholog-
ical findings, and the adjacent non- neoplastic esophageal 
mucosa were selected with white- light endoscopic images 
by two endoscopists. OXEI was synchronized to each tar-
get area, and the StO2 was quantified using the dedicated 
software. The StO2 difference between SESCC and adjacent 
non- neoplastic esophageal mucosa in the same image was 
calculated as ΔStO2. The method used to quantify the StO2 
and ΔStO2 with the OXEI images is shown in Figure S2.

2.7 | Statistical analysis

Patient and lesion characteristics were summarized using 
proportion or descriptive statistics such as mean, median, and 
range. Comparison between groups was assessed by employ-
ing Mann– Whitney U test. The correlations between the ex-
pression of hypoxia markers and MVD were determined using 
Spearman's rank correlation coefficient. All p values were re-
ported as two- sided, and p < 0.05 was considered statistically 
significant. All statistical analyses were performed with EZR 
(Saitama Medical Center, Jichi Medical University), a graphi-
cal user interface for R 4.1.0 (R Foundation for Statistical 
Computing). More precisely, EZR is a modified version of R 
commander (version 2.7- 0) designed to add statistical func-
tions frequently used in biostatistics.33

3  |  RESULTS

3.1 | Clinicopathological characteristics 
of patients and lesions in pathological 
studies

Of the 130 lesions from 121 patients, 109 lesions from 
102 patients were enrolled and evaluated in this study 
(Figure S3). The pathological depths of invasion were pTis 
(36 lesions, 33%), pT1a (42 lesions, 39%), pT1b (31 lesions, 
28%). The clinicopathological characteristics of the pa-
tients and lesions are presented in Table S2.

3.2 | The expression of hypoxia markers 
with immunohistochemical staining 
by the depth of invasion

The mean (range) H- score of HIF- 1α in non- neoplasia, 
pTis- T1a, and pT1b was 4.95 (0– 60), 5.51 (0– 60), and 16.0 
(0– 90), respectively. The mean (range) H- score of CAIX in 
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non- neoplasia, pTis- T1a, and pT1b was 0.290 (0– 3), 13.0 (0– 
170), and 15.6 (0– 170), respectively. The mean (range) H- 
score of GLUT1 in non- neoplasia, pTis- T1a, and pT1b was 
37.6 (0– 160), 199 (70– 300), and 177 (40– 280), respectively. 
The expression of HIF- 1α was significantly higher in pT1b 
than in non- neoplasia (p < 0.001, Figure 2A) and in pT1b than 
in pTis- T1a (p = 0.00472, Figure 2A). The expression of CAIX 
and GLUT1 was significantly higher in SESCC than in non- 
neoplasia (p < 0.001, p < 0.001, respectively, Figure 2B,C).

3.3 | Evaluation of MVC and MVD by the 
depth of invasion and the relationship 
between them and the expression of 
hypoxia markers

The median (range) MVC in non- neoplasia, pTis- T1a, 
and pT1b was 14.2/mm2 (2.14– 42.5/mm2), 22.7/mm2 

(3.46– 66.3/mm2), and 24.8/mm2 (11.8– 48.1/mm2), re-
spectively. MVC was significantly higher in SESCC 
than in non- neoplasia (p < 0.001, Figure  3A). The me-
dian (range) MVD in non- neoplasia, pTis- T1a, and pT1b 
was 0.478% (0.0391– 2.24%), 0.991% (0.0639– 7.09%), and 
1.51% (0.447– 8.80%), respectively. MVD was signifi-
cantly higher in SESCC than in non- neoplasia (p < 0.001, 
Figure  3A) and in pT1b than in pTis- T1a (p = 0.00479, 
Figure  3A). Representative photomicrographs of MVC 
and MVD in non- neoplastic tissue, pTis, and pT1b are 
shown in Figure 3B. MVD was positively correlated with 
the expression of HIF- 1α, CAIX, and GLUT1 (R = 0.24, 
R = 0.29, R = 0.52, respectively, Figure  4A). Moreover, 
MVD was significantly increased in the positive expres-
sion group of HIF- 1α and CAIX compared with that in 
the negative expression group (p = 0.00120, p < 0.001, 
respectively, Figure  4B) and in the higher expression 
group of GLUT1 (H- score > 100) compared with that in 

F I G U R E  1  (A– L) Representative photomicrographs of immunohistochemical staining of HIF- 1α (A– D), CAIX (E– H), and GLUT1 (I– L). 
The intensity of staining was evaluated in the nuclei for HIF- 1α and in the membrane for CAIX and GLUT1. Scale Bar: 50 μm. (A, E, I) 0, 
negative staining. (B, F, J) 1+, weak staining. (C, G, K) 2+, moderate staining. (D, H, L) 3+, strong staining.
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the lower expression group (H- score ≦ 100) (p < 0.001, 
Figure 4B).

3.4 | Oxygen saturation (StO2) quantified 
with OXEI by the depth of invasion

During the study period, we evaluated 16 consecutive le-
sions from 15 patients both with OXEI before ESD and 
pathological immunostainings of ESD specimens. The 
pathological depths of invasion were pTis (5 lesions, 31%), 
pT1a (6 lesions, 38%), pT1b (5 lesions, 31%). The me-
dian (range) StO2 in non- neoplasia, pTis- T1a, and pT1b 

was 61.5% (52%– 80%), 62% (53%– 75%), and 54% (51%– 
60%), respectively. The StO2 was significantly lower in 
pT1b than in non- neoplasia (p = 0.00131, Figure 5A) and 
tended to be lower in pT1b than in pTis- T1a (p = 0.0606, 
Figure  5A). The median (range) ΔStO2 in pTis- T1a and 
pT1b was −1% (−5% to +3%) and −7% (−13% to −5%), 
respectively. ΔStO2 was significantly lower in pT1b than 
in pTis- T1a (p = 0.00260, Figure S4). Images of the StO2, 
quantified using OXEI, and photomicrographs of immu-
nohistochemical staining of HIF- 1α, CAIX, and GLUT1 
and double immunohistochemical staining of CD31 and 
α- SMA in a representative case of pT1b ESCC are shown 
in Figure 5B– F.

F I G U R E  2  (A, B) Comparison of the expression of hypoxia markers in non- neoplasia (n = 109), pTis- T1a (n = 78), and pT1b (n = 31). 
Additionally, representative photomicrographs of immunohistochemical staining of HIF- 1α (A), CAIX (B), and GLUT1 (C). N.S., not 
significant, *p < 0.05, **p < 0.01, ***p < 0.001. Scale Bar: 100 μm.
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4  |  DISCUSSION

In this study, two important results were obtained. First, 
the expression of all hypoxia markers and vessel density 
were significantly different in pT1b compared with those 
in non- neoplasia, whereas the expression of HIF- 1α was 
not significantly different in pTis- T1a compared with that 
in non- neoplasia. Second, the StO2 in vivo with OXEI was 
significantly lower in pT1b than in non- neoplasia and 
tended to be lower in pT1b than in pTis- T1a, whereas it 
was not significantly different in pTis- T1a compared with 
in non- neoplasia. To the best of our knowledge, this was 
the first study to compare the expression of hypoxia mark-
ers, vessel density, and StO2 in non- neoplasia, pTis- T1a, 
and pT1b with ESD specimens. These important results 
suggest that ESCC becomes markedly hypoxic in espe-
cially pT1b.

The strength of this study was the evaluation of the 
expression of hypoxia markers and vessel density in the 

largest number of SESCC samples compared with that in 
previous reports18,34 and the inclusion of ESD specimens 
that were histologically diagnosed as having negative 
horizontal and vertical margins, excluding surgical speci-
mens, in order to evaluate them under certain conditions. 
No previous study has examined in detail the oxygen sta-
tus of SESCC in a large number of cases using only ESD 
specimens. The expression of hypoxia markers and ves-
sel density were similar as in previous reports, indicating 
that in ESCC, they become higher as tumor invades deep-
er.10,12– 18,35 When examined in detail, the expression of 
all hypoxia markers and vessel density were significantly 
different in pT1b compared with those in non- neoplasia, 
whereas the expression of HIF- 1α was not significantly 
different in pTis- T1a compared with that in non- neoplasia, 
which is a novel finding. In the present study, vessel den-
sity was higher in T1b than in pTis- T1a, suggesting more 
progressive angiogenesis, similar to previous reports.18 It 
has also been previously reported that the expression of 

F I G U R E  3  (A) Comparison of MVC and MVD in non- neoplasia (n = 109), pTis- T1a (n = 78), and pT1b (n = 31). (B) Representative 
photomicrographs of MVC and MVD in non- neoplasia, pTis, and pT1b. N.S., not significant, **p < 0.01, ***p < 0.001. Scale Bar: 500 μm.
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HIF- 1α is higher as angiogenesis progresses.10,16 These 
findings suggest that the expression of all hypoxia mark-
ers and vessel density are significantly different in pT1b 
compared to non- neoplasia as the oxygen environment 
becomes hypoxic, caused by the progression of angiogen-
esis. As a result of less advanced angiogenesis in pTis- T1a 
compared to pT1b, the expression of HIF- 1α is almost neg-
ligible, suggesting that the oxygen environment in pTis- 
T1a may be closer to normoxia than in pT1b.

Further, the strength of this study is that OXEI allowed 
us to evaluate StO2 more safely, in real time, than other 
methods of evaluating StO2. The gold standard method for 
the quantification of the StO2 is the direct measurement 
of StO2 in the tumor using an Eppendorf needle electrode 
system, but this method is highly invasive because the 
electrode is directly inserted into the tumor.36,37 PET- based 
hypoxia imaging with probes such as 18F- FMISO,38 60 
and 64Cu- ATSM,39,40 and 18F- FAZA41 has been reported 
as a method for non- invasive estimation of StO2, but it has 
the disadvantage of being affected by drug metabolism 
and the need to prepare an expensive device. And it must 

be hard to detect and measure StO2 of superficial cancer in 
digestive tract with PET. OXEI is an image- enhanced di-
gestive tract endoscopy that can show StO2 in vivo, in real 
time, on digestive tract lesions including SESCC. Similar 
to ordinary endoscopic observation, OXEI can safely 
image StO2 without puncture and drug administration. In 
this study, StO2 was not significantly different in pTis- T1a 
compared to non- neoplasia, but was significantly lower 
in pT1b than in non- neoplasia and tended to be lower in 
pT1b than in pTis- T1a, which is a novel finding. The ox-
ygen environment quantified using the Eppendorf needle 
electrode system and PET has been reported to be hypoxic 
in some solid tumors compared to non- neoplasia, and the 
oxygen environment becomes more hypoxic as they prog-
ress.23,36– 41 In a previous study, Kaneko et al23 reported 
that the StO2 in vivo with OXEI was significantly lower 
in esophageal neoplasia than in non- neoplasia, but it is 
not known whether StO2 was lower in pTis- T1a or pT1b. 
Our StO2 findings suggest that the oxygen environment is 
markedly hypoxic in T1b, while it is close to normoxia in 
pTis- T1a.

F I G U R E  4  (A) Correlation between MVD and the expression of hypoxia markers in non- neoplasia and SESCC (n = 218). MVD was 
positively correlated with the expression of HIF- 1α, CAIX, and GLUT1. (B) MVD was significantly higher in the positive expression group 
of HIF- 1α and CAIX than in the negative expression group, and MVD was significantly increased in the higher expression group of GLUT1 
(H- score > 100) compared with that in the lower expression group of GLUT1 (H- score ≦ 100). **p < 0.01, ***p < 0.001.
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These important results, confirmed by immunohisto-
chemical staining and OXEI, suggest that ESCC becomes 
markedly hypoxic in pT1b and it may be close to normoxia 
in Tis- T1a. This is significant because it clarifies the biolog-
ical characteristics of the oxygen environment in SESCC. 
Clinically, pT1b ESCC is markedly more metastatic and has 
a poorer prognosis than pTis- T1a.42 The present results sug-
gest that factors associated with metastasis may be associ-
ated with changes in the oxygen status in SESCC. This may 
lead to elucidation of the biological mechanisms involved 
in the malignant transformation associated with submuco-
sal invasion of SESCC. Additionally, OXEI may be useful 

for the prediction of the depth of invasion between pTis- 
T1a and pT1b. Actually, ΔStO2 was less than −5 in 1 out 
of 11 cases with pTis- T1a and in 5 out of 5 cases for pT1b, 
and ΔStO2 was significantly lower in pT1b than in pTis- T1a 
(Figure S4). In SESCC, the prediction of the depth of in-
vasion is important because the treatment strategy differs 
between pTis- T1a and pT1b.43 One of the imaging methods 
used to predict the depth of invasion in SESCC is the evalu-
ation of blood vessel morphology by magnifying endoscopy, 
using narrowband imaging, but its diagnostic capability is 
not yet sufficient.43,44 This result indicates that ΔStO2 may 
be more useful in the prediction of the depth of invasion.

F I G U R E  5  (A) Comparison of 
StO2 in non- neoplasia (n = 16), pTis- 
T1a (n = 11), and pT1b (n = 5). N.S., not 
significant, †p < 0.1, *p < 0.05. (B– E) 
Representative photomicrographs 
of StO2 quantified with OXEI (B), 
immunohistochemical staining of HIF- 
1α (C), CAIX (D), and GLUT1 (E), and 
double immunohistochemical staining 
of CD31 and α- SMA (F). The StO2 in 
the deepest part of this T1b ESCC was 
51% and in this adjacent non- neoplastic 
esophageal mucosa was 57%, and ΔStO2 
was −6%. Scale Bar: 100 μm.
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There are some limitations to this study. First, this 
study was a retrospective study, and we collected as many 
images as possible, but the number of OXEI cases was 
small. We are currently collecting the OXEI images of 
digestive tract lesions including ESCC and hope to inves-
tigate larger number of cases in the future. Second, the 
endoscopically resected specimens included in this study 
were limited to shallow pT1b ESCC cases that were preop-
eratively judged to be endoscopically treatable lesions up 
to the clinical T1b- SM1. In order to solve this problem, it 
may be necessary to examine deep pT1b ESCC including 
the clinical T1b- SM2/3 with surgery. However, endoscopic 
and surgical resection may each have different effects on 
the expression of hypoxia markers and vessel density due 
to the differences in the procedure of blood flow blockade 
from major vessels.

In summary, current results suggest that ESCC be-
comes hypoxic with high vessel density even at an early 
stage. This is especially prominent in T1b. As the number 
of cases evaluated with OXEI in this study was small, we 
would like to increase the number of cases in the future 
for further studies.
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