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INTRODUCTION 1 

Laparoscopic surgery has become increasingly prevalent in many areas of abdominal surgery. While 2 

laparoscopic surgery provides patients with early postoperative recovery1,2, it also requires surgeons to 3 

have advanced surgical skills. Disparities have been reported in surgical outcomes between skilled 4 

and unskilled surgeons, especially in the field of laparoscopic gastrointestinal surgery3-8. Accordingly, 5 

it is of paramount importance to provide surgical education based on objective and quantitative 6 

evaluation of surgeons' skills to enhance patient safety and prevent harmful intraoperative problems, 7 

such as bleeding and tissue damage.  8 

Tissue handling, or respect for tissue, is one of the elements of surgical skills. Rough tissue handling 9 

must be avoided because it can cause tissue impairment and bleeding. Further, the resulting blood can 10 

hide critical structures or obscure the correct dissection layer, leading to secondary adverse events. 11 

Taken together, surgeons should receive appropriate feedback by which to improve their tissue 12 

handling skills if they perform procedures that result in bleeding or oozing. The commonly used 13 

existing surgical skill assessment tools, such as the Objective Structured Assessment of Technical 14 

Skills (OSATS)9 and Global Operative Assessment of Laparoscopic Skills (GOALS)10, include tissue 15 

handling as an item in the assessment.  16 

However, the problems with these tools are that subjectivity, or rater bias, is inevitable because an 17 

expert evaluates surgeons’ tissue handling skills and that they are not purely quantitative as 18 

evaluations are made on a scale of one to five. Observational clinical human reliability analysis 19 
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(OCHRA), which can reduce subjectivity by counting errors, has a time consuming and labor-1 

intensive nature, involving experts to identify errors throughout unedited operation videos11. In this 2 

context, automated evaluations through the application of artificial intelligence and machine learning 3 

could be highly beneficial.  4 

According to a previous analysis of OCHRA, most tissue handling errors are reflected in the number of 5 

bleeding errors12, which suggests that tissue handling can be evaluated by bleeding events; however, 6 

assessments are difficult using the conventionally chosen estimated blood loss because the assessment 7 

of tissue handling should consider not only major hemorrhage, as reflected in the amount of blood loss, 8 

but also minor hemorrhage, such as oozing. Therefore, a system that can automatically detect even 9 

minor hemorrhage is necessary for automatic tissue handling skill evaluation. Additionally, to our 10 

knowledge, our study provides the first report of an automated assessment of tissue handling skill using 11 

videos of actual operations. This study aimed to develop a machine learning model that automatically 12 

quantifies the spread of blood in the surgical field using intraoperative videos of laparoscopic colorectal 13 

surgery and evaluated whether indices measured with the developed model could be used to 14 

automatically assess tissue handling skill. 15 

MATERIALS AND METHODS 16 

Study design 17 

This was a retrospective experimental study using intraoperative videos of laparoscopic colorectal 18 

surgery collected from multiple institutions in Japan. The protocol for this study was reviewed and 19 
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approved by the Ethics Committee of the National Cancer Center Hospital East (Registration No.: 1 

2020-315). This study conforms to the provisions of the Declaration of Helsinki 1964 (as revised in 2 

Brazil in 2013). 3 

Machine learning-based blood pixel classification 4 

A total of 504 blood areas and 504 non-blood areas were extracted from 28 intraoperative videos of 5 

laparoscopic colorectal surgery as small images and used to train the machine learning-based 6 

classification model. These 28 intraoperative videos were randomly selected from the video data set 7 

described below. A representative image is shown in Figure 1. The area of the individual small images 8 

was 10 to 150 pixels. In general, the colors of pixels on a screen can be expressed in terms of RGB 9 

values, which represent the ratio of mixing red (R), green (G), and blue (B) colors. These three primary 10 

colors each can be set to one of 256 levels of brightness, and thus can represent a total of 16,777,126 11 

different hues. The RGB values of all pixels in the extracted areas were obtained.  12 

All pixels were divided into three datasets: training, validation, and test of the algorithm. The 13 

validation dataset was utilized to adjust the parameters to ensure that the best model performance was 14 

achieved and to prevent the model from overfitting. The data were split at a per-case level rather than 15 

at a per-pixel level. Therefore, the pixels from a video in the training dataset were not included in the 16 

other datasets; that is, the assessment was not circular. The hyper-parameters of the machine learning 17 

model to classify pixel RGB values into blood and non-blood were optimized to maximize the 18 
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classification accuracy. Logistic regression analysis was chosen as the machine learning method in 1 

this study. 2 

The evaluation metrics for the machine learning model’s classification of blood or non-blood were 3 

overall accuracy, sensitivity, and specificity. The calculation formula for each metric is shown below. 4 

TP represents the number of blood pixels correctly classified, TN represents the number of non-blood 5 

pixels correctly classified, FN represents the number of blood pixels incorrectly classified as non-6 

blood pixels, and FP represents the number of non-blood pixels incorrectly classified as blood pixels. 7 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  8 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  9 

Specificity = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇

 10 

Video dataset for surgical skill assessment 11 

To apply the results of the machine learning-based blood pixel measurements to the assessment of 12 

surgical skill, especially tissue handling skill, a video dataset was constructed. The videos used for 13 

surgical skill assessment were surgical videos of laparoscopic sigmoidectomy (Lap-S) submitted by 14 

hospitals throughout Japan to the Endoscopic Surgical Skill Qualification System (ESSQS) 15 

established by the Japan Society for Endoscopic Surgery between 2016 and 2017. ESSQS uses a 16 

scoring system in which the evaluation criteria are divided into two categories: common criteria, 17 

which correspond to basic endoscopic techniques that are commonly used for all procedures, and 18 
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organ-specific criteria, which correspond to special endoscopic surgical techniques for individual 1 

organs13. The details of ESSQS are shown in the Supplementary table 1.  2 

In ESSQS, two experts score tissue handling skill, which is one of the elements of common criteria, in 3 

each video from 0 to 3 points. The “high tissue handling score group” was defined as surgical videos 4 

in which the sum of the tissue handling scores given by the two experts was 5 or more out of 6, while 5 

the "low tissue handling score group" was defined as surgical videos in which either one of the two 6 

experts assigned a score of 0.  7 

ESSQS evaluates not only tissue handling but also other technical factors, such as the development of 8 

the surgical field, efficiency of the procedure, and the surgeon's autonomy, for a total score of 100 9 

points. Videos with an ESSQS overall score in the +2SD (standard deviation) range were defined as 10 

the “overall score +2SD group” and videos with an overall score in the -2SD range as the “overall 11 

score -2SD group.” 12 

Since applicants for the ESSQS must be board certified surgeons of the Japan Surgical Society and 13 

must have performed at least 20 highly difficult surgeries, such as esophageal surgery, gastrectomy, 14 

and colorectal resection within the last 3 years, the skills of these applicants are considered to have 15 

reached at least an intermediate level. To include groups with lower skills in the analysis, Lap-S 16 

videos performed by beginner surgeons who had conducted fewer than five Lap-S surgeries were 17 

collected from multiple institutions and defined as the “novice surgeon group.” 18 

Blood pixel count-based surgical skill assessments 19 
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All video data were divided into static frames every 1/30 s (30 fps), and the number of pixels classified 1 

as blood by the machine learning model developed in this study was counted in all pictures. A 2 

conceptual diagram from the blood/non-blood pixel classification to the automatic counting of blood 3 

pixels for tissue handling skill evaluation is shown in Figure 2. 4 

To eliminate the influence of the surgery duration, the blood pixel count per frame, which is the 5 

number of blood pixels in the entire video divided by the number of frames, was used in the tissue 6 

handling skill evaluation. 7 

To test whether the blood pixel count per frame indicated good or poor tissue handling skills, the index 8 

was compared among three groups: the high tissue handling score group, the low tissue handling score 9 

group, and the novice surgeon group. We hypothesized that there would be differences in the blood 10 

pixel count per frame among these three groups, reflecting differences in tissue handling skills. 11 

In addition, to examine whether the index reflected overall surgical skill, comparisons were made 12 

among the overall score +2SD group, the overall score -2SD group, and the novice surgeon group. A 13 

supplemental analysis verified whether conventionally estimated blood loss correlated with tissue 14 

handling skills. Our hypotheses were that there would be no difference in the blood pixel count per 15 

frame among the overall score +2SD group, the overall score -2SD group, and the novice surgeon 16 

group because overall surgical skill consists of several elements; not only tissue handling, but also the 17 

development of the surgical field, the surgeon’s autonomy, and efficiency during the procedure. 18 
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Estimated blood loss was not anticipated to correlate with tissue handling skills because blood loss in 1 

laparoscopic colorectal surgery is small in absolute terms, regardless of surgical skill.  2 

Statistical analysis 3 

Quantitative data are reported as mean [standard deviation]. Two-group comparisons used t-tests and 4 

three-group comparisons used one-way ANOVA. When one-way ANOVA indicated significant 5 

differences, each between-group post-hoc comparison was conducted using the Tukey method. All 6 

tests performed were two-sided, with the level of significance set at p < 0.05. All statistical analyses 7 

were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), a 8 

graphical user interface for R (R Foundation for Statistical Computing, Vienna, Austria). More 9 

precisely, EZR is a modified version of R Commander designed to add functions frequently used in 10 

biostatistics14. 11 

RESULTS 12 

Machine learning-based blood pixel classification  13 

In total, 1008 images were extracted from 28 videos of laparoscopic colorectal surgery. The images 14 

contained 23736 blood pixels and 20994 non-blood pixels. The training data consisted of 34988 pixels 15 

extracted from 20 cases, the validation data 4606 pixels from 4 cases, and the test data 5136 pixels from 16 

4 cases. Figure 3 shows a three-dimensional mapping of blood pixels and non-blood pixels in RGB 17 

space. The inference results from the machine learning model applied to the test dataset are shown in 18 

the Supplementary table 2. The overall accuracy of the machine learning model was 85.7%. The 19 
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sensitivity and specificity were 99.9% and 72.7%, respectively. 1 

Automatic tissue handling skill assessment 2 

The number of videos used in the analysis was 60 from the high tissue handling score group, 55 from 3 

the low tissue handling score group, and 36 from the novice surgeon group. The results of using the 4 

present machine learning model on these videos to obtain the blood pixel count per frame are shown in 5 

Figure 4. One-way ANOVA revealed significant differences among the three groups for blood pixel 6 

count per frame (high tissue handling score group 20972.23 [19287.05] vs. low tissue handling score 7 

group 34473.42 [28144.29] vs. novice surgeon group 50630.04 [42427.76], p < 0.01). Pairwise 8 

comparisons revealed that the high tissue handling score group had significantly fewer blood pixels per 9 

frame than did the low tissue handling score group and the novice surgeon group. The low tissue 10 

handling score group had significantly fewer such pixels than the novice surgeon group.  11 

Correlation between blood pixel count per frame and overall surgical skill score 12 

The number of videos used in the analysis was 17 from the overall score +2SD group and 20 from the 13 

overall score -2SD group. Comparison of these groups with the novice surgeon group indicated no 14 

significant difference in the blood pixel count per frame (overall score +2SD group 33341.44 15 

[25450.99] vs. overall score -2SD group 39203.92 [39364.17] vs. novice surgeon group 50630.04 16 

[42427.76], p = 0.267; Figure 5). That is, there was no correlation between the blood pixel count per 17 

frame and the overall surgical skill score. 18 

Correlation between blood loss and tissue handling score 19 
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The estimated blood loss did not differ significantly among the high and low tissue handling score 1 

groups and the novice surgeon group (high score 7.10 [11.3] ml vs. low score group 12.8 [19.2] ml vs. 2 

novice 12.9 [26.4] ml, p = 0.461; Figure 6A). In addition, no significant difference was revealed in 3 

blood loss among the overall score +2SD and -2SD groups and the novice group. (+2SD 19.8 [28.0] 4 

ml vs. -2SD 15.0 [24.1] ml vs. novice 12.9 [26.4] ml, p = 0.793; Figure 6B). Based on the above 5 

results, conventionally estimated blood loss did not correlate with either tissue handling skill alone or 6 

overall skill. 7 

DISCUSSION 8 

In this study, we successfully developed a machine learning model that evaluates the number of blood 9 

pixels using RGB information and showed that the blood pixel count per frame calculated by the 10 

proposed model significantly differed among groups with different tissue handling skills. These 11 

results suggest the possibility of objective, quantitative evaluation of tissue handling without requiring 12 

the time and effort of experts.  13 

The blood pixel count per frame, which is the total blood pixel count for the entire surgery divided by 14 

the number of frames, was significantly lower at higher levels of tissue handling. This suggests that 15 

the model may have correctly determined that tissue damage and oozing due to inappropriate grasping 16 

or traction are less common in those who are skilled in tissue handling. Surprisingly, pairwise 17 

comparisons showed that this model could distinguish poor and good tissue handling, not only among 18 

extremely unskilled surgeons, but also among surgeons who had reached a certain level of general 19 
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surgical skill. Thus, the blood pixel count per frame may be a highly reliable indicator for 1 

automatically determining the level of tissue handling for surgeons at any level.  2 

Comparison of the +2SD group and -2SD group for overall scores and the novice surgeon group 3 

showed no significant difference in the blood pixel count per frame between any two groups. Overall 4 

surgical skill is determined by a combination of factors, including development of the surgical field, 5 

the surgeon’s autonomy and efficiency during the procedure, as well as tissue handling. Therefore, the 6 

difference in tissue handling skill was likely obscured by grouping the videos according to overall 7 

surgical skill. This result suggests that the present model can evaluate specifically the level of tissue 8 

handling, as intended.  9 

Blood loss did not correlate with either tissue handling skill or overall skill. It is likely that the 10 

surgeon's skill makes no difference to the amount of blood loss because laparoscopic surgery involves 11 

less blood loss compared to open surgery. Chen et al. reported that, for laparoscopic surgery for 12 

colorectal cancer, surgery time decreased with experience, but there was no significant difference in 13 

blood loss15, a finding compatible with the results of the present study. Our study confirmed that it is 14 

difficult to assess surgeons’ tissue handling skill using existing parameters and that new measures are 15 

needed.  16 

Regarding the reliability of the scores used in this study, the video test was based on an anonymized, 17 

unedited, random video review, and was scored by two to three experts in laparoscopic surgery 18 

designated by the Japan Society for Endoscopic Surgery; the scores were, therefore, likely highly 19 
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reliable. Many skilled surgeons review multiple surgical videos each year for ESSQS, which is a time- 1 

and labor-demanding process. To mitigate this burden, a feasible automated review system for 2 

surgical procedures is highly worthwhile. 3 

Kitaguchi et al. reported the use of three-dimensional convolutional neural network model for 4 

automatic surgical skill assessment (ASSA)16. In their report, they mentioned that classification by 5 

surgical skill assessment items may lead to further development of ASSA. To the best of our 6 

knowledge, the current study is the first report of an automated assessment of one component of 7 

laparoscopic surgical techniques using videos of actual operations. This model is simultaneously 8 

objective and quantitative. Subdividing surgical skills into subcategories for each assessment item, as 9 

in this study, may allow surgeons to obtain grades for each assessment item, which could lead to 10 

constructive feedback.  11 

This study has several limitations. First, the overall accuracy of the machine learning model was not 12 

markedly high. Further improvement of the performance of the machine learning model would increase 13 

the reliability of the automatic tissue handling skill assessment. Second, this was a retrospective study, 14 

and hence, subject to selection bias. In addition, definitions of groups, such as novice surgeons, are 15 

arbitrary. In the future, further validation with a more diverse cohort of skill levels is necessary. Third, 16 

the number of cases in this study was relatively small, although far larger than previous studies that 17 

reported laparoscopic surgical skill assessment methods, most of which involved fewer than 30 18 

participating trainees17. Further investigations with more subjects are warranted. Moreover, in the 19 
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current study, we chose ESSQS as the reference source for the surgeon’s tissue handling skill due to the 1 

accessibility of data. Correlations with OSATS or GOALS scores should also be examined in the future. 2 

We acknowledge that the present study is a proof-of-concept and does not report any data directly linked 3 

to clinical outcomes. However, multiple studies have shown that better clinical outcomes are achieved 4 

when laparoscopic surgeries are performed by skilled surgeons3-8. Therefore, our study represents 5 

progress toward automatic surgical skill evaluations, although the present index can only evaluate tissue 6 

handling, which is one element of surgical skills. We plan to conduct a prospective study to verify the 7 

relationship with clinical data when a comprehensive automated skill evaluation system is established. 8 

In conclusion, we developed a machine learning model that can automatically count blood pixels in 9 

laparoscopic colorectal surgeries. The blood pixel count per frame correlated with the level of tissue 10 

handling skill. Automatic evaluation of surgical skills has significant potential to inform education for 11 

laparoscopic surgery.  12 
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Figure titles and legends 1 

Figure 1.  2 

Figure title: How images were created for the extraction of blood/non-blood pixels. 3 

Figure legend: The areas that the surgeon determined to be blood/nonblood are shown, with image 4 

sections 4 through 9 being nonblood areas and the remainder being blood areas. Several still images 5 

were taken from each case, and blood/non-blood images were created from different scenes. 6 

 7 

Figure 2. 8 

Figure title: Flow from the blood/non-blood pixel classification to the automatic counting of blood 9 

pixels. 10 

Figure legend: a) Blood pixels and non-blood pixels were extracted from videos of colorectal surgeries 11 

and were input as training data. b) The machine learning model was fine-tuned using the validation 12 

dataset and evaluated for accuracy using the test dataset. c) This model was applied to the evaluation of 13 

the tissue handling skill by counting the number of blood pixels in surgical videos of laparoscopic 14 

sigmoidectomy in another data set. 15 

 16 

Figure 3.  17 

Figure title: Plot in RGB space of extracted pixels. 18 
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Figure legend: A space where three axes consist of the brightness of red (R), green (G), and blue (B). 1 

Each of these three primary colors could be set to one of 256 levels of luminance, although they are 2 

linearly reduced on the axes of the figure and expressed from 0 to 1. Each point in the space corresponds 3 

to an individual pixel. The red points represent pixels extracted from blood areas and the blue pixels 4 

those extracted from non-blood areas. The black points had RGB values that could not be distinguished 5 

as blood/non-blood in this model. The surface formed by the black points serves as a boundary surface 6 

that distinguishes blood from non-blood.  7 

 8 

Figure 4.  9 

Figure title: Blood pixel count per frame: High and low tissue handling score and novice surgeon 10 

groups.  11 

Figure legend: Significant differences were found in all two-group comparisons, with the group 12 

considered to have a higher level of tissue handling having a lower blood pixel count. 13 

 14 

Figure 5.  15 

Figure title: Blood pixel count per frame in the overall score: +2SD, -2SD, and novice surgeon groups.  16 

Figure legend: One-way ANOVA comparison of the three groups revealed no significant differences. 17 

 18 

Figure 6.  19 
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Figure title: The amount of blood loss among groups. 1 

Figure legend: A: A comparison of blood loss between the high and low tissue handling score groups 2 

revealed no significant difference. B: There was no significant difference in the amount of blood loss 3 

between the overall score +2SD and -2SD groups. 4 














